1. Roll teoremasi Lagranj teoremasi



Yüklə 382,61 Kb.
səhifə2/3
tarix29.04.2023
ölçüsü382,61 Kb.
#104780
1   2   3
1-mavzu maruza (1)

F(a)= F(b)=0,
demak F(x) funksiya Roll teoremasining barcha shartlarini qanoatlantiradi.
Demak, Roll teoremasiga ko‘ra (a,b) intervalda kamida bitta shunday s nuqta mavjud bo‘ladiki, F’(c)=0 bo‘ladi.
Shunday qilib,

va bundan esa isbot qilinishi kerak bo‘lgan (1) formula kelib chiqadi. Teorema isbot bo‘ldi.
(1.1) formulani ba’zida Lagranj formulasi deb ham yuritiladi. Bu formula
f (b)-f(a)=f’(c)(b-a) (2)
ko‘rinishda ham yoziladi.
Endi Lagranj teoremasining geometrik ma’nosiga to‘xtalamiz. f(x) funksiya Lagranj teoremasining shartlarini qanoatlantirsin deylik. Funksiya grafigining A(a;f(a)), B(b;f(b)) nuqtalar orqali kesuvchi o‘tkazamiz, uning burchak koeffitsienti
bo‘ladi.

Hosilaning geometrik ma’nosiga binoan f’(c) - bu f(x) funksiya grafigiga uning (s;f(s)) nuqtasida o‘tkazilgan urinmaning burchak koeffitsienti: tgb=f’(c) Demak, (1) formula (a,b) intervalda kamida bitta shunday c nuqta mavjudligini ko‘rsatadiki, f(x) funksiya grafigiga (c;f(c)) nuqtada o‘tkazilgan urinma AB kesuvchiga paralell bo‘ladi.
Isbot qilingan (1) formulani boshqacha ko‘rinishda ham yozish mumkin. Buning uchun a tengsizliklarni e’tiborga olib, belgilash kiritamiz, u holda c=a+(b-a)q, 01 bo‘lishi ravshan. Natijada (1) formula ushbu f(b) - f(a) = f’(a+q(b-a))(b-a) ko‘rinishga keladi.
Agar (1) formulada a=x0; b=x0+Dx almashtirishlar bajarsak, u
f(x0+Dx)-f(x0)=f’(c)Dx (3)
bu yerda x0 0+Dx, ko‘rinishga keladi. Bu formula argument orttirmasi bilan funksiya orttirmasini bog‘laydi, shu sababli (1.3) formula chekli orttirmalar formulasi deb ataladi.
Agar (1) Lagranj formulasida f(a)=f(b) deb olsak, Roll teoremasi kelib chiqadi, ya’ni Roll teoremasi Lagranj teoremasining xususiy holi ekan.
Misol. Ushbu [0,2] kesmada f(x)=4x3-5x2+x-2 funksiya uchun Lagranj formulasidagi c ning qiymatini toping.
Yechish. funksiyaning kesma uchlaridagi qiymatlarini va hosilasini hisoblaymiz: f(0)=-2; f(2)=12; f’(x)=12x2-10x+1. Olingan natijalarni Lagranj formulasiga qo‘yamiz, natijada
12-(-2)=( 12c2-10c+1)(2-0) yoki 6c2-5c-3=0 kvadrat tenglamani hosil qilamiz. Bu tenglamani yechamiz: c1,2= . Topilgan ildizlardan faqat qaralayotgan kesmaga tegishli. Demak, c= ekan.
Lagranj teoremasi o‘z navbatida quyidagi teoremaning xususiy holi bo‘ladi.

Koshi teoremasi


4-teorema (Koshi teoremasi). Agar [a,b] kesmada f(x) va g(x) berilgan bo‘lib,
1) [a,b] da uzluksiz;
2) (a,b) intervalda f’(x) va g’(x) mavjud, hamda g’(x)0 bo‘lsa, u holda hech bo‘lmaganda bitta shunday c (a) nuqta topilib,
(4)
tenglik o‘rinli bo‘ladi.
Isboti. Ravshanki, (4) tenglik ma’noga ega bo‘lishi uchun g(b)g(a) bo‘lishi kerak. Bu esa teoremadagi g’(x)0, x(a;b) shartdan kelib chiqadi. Haqiqatdan ham, agar g(a)=g(b) bo‘lsa, u holda g(x) funksiya Roll teoremasining barcha shartlarini qanoatlantirib, biror c(a;b) nuqtada g’(c)=0 bo‘lar edi. Bu esa x(a;b) da g’(x)0 shartga ziddir. Demak, g(b)g(a).
Endi yordamchi
funksiyani tuzaylik.
Shartga ko‘ra f(x) va g(x) funksiyalar [a,b] da uzluksiz va (a,b) intervalda differensiyalanuvchi bo‘lgani uchun F(x) birinchidan [a,b] kesmada uzluksiz funksiyalarning chiziqli kombinatsiyasi sifatida uzluksiz, ikkinchidan (a,b) intervalda

hosilaga ega.
So‘ngra F(x) funksiyaning x=a va x=b nuqtalardagi qiymatlarini hisoblaymiz: F(a)F(b)0. Demak, F(x) funksiya [a,b] kesmada Roll teoremasiinng barcha shartlarini qanoailantiradi. Shuning uchun hech bo‘lmaganda bitta shunday c (a) nuqta topiladiki, F’(c)0 bo‘ladi.
Shunday qilib,

va bundan (4) tenglikning o‘rinli ekani kelib chiqadi. Isbot tugadi.
Isbotlangan (4) tenglik Koshi formulasi deb ham ataladi.
Endi Koshi teoremasining geometrik ma’nosini aniqlaymiz. Aytaylik x=(t), y=f(t), atb tekislikdagi chiziqning parametrik tenglamasi bo‘lsin. Shuningdek chiziqda t=a ga mos keluvchi nuqtani A((a),f(a)), t=b ga mos keluvchi nuqtani B((b),f(b)) kabi belgilaylik. (22-rasm).
U holda (4) formulaning chap qismi

Yüklə 382,61 Kb.

Dostları ilə paylaş:
1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin