1-variant.
1. Teylor ko‘phadi. Peano ko‘rinishdagi qoldiq hadli Teylor formulasi.
2. . f(x) = x4 + 2x3-3x2 – 4x+1 ko‘phadni x+1 ning darajalari bo‘yicha yoying. . f(x) = x4 + 2x3-3x2 – 4x+1 ko‘phadni x+1 ning darajalari bo‘yicha yoying.
3. funksiyani x0=-1dagi n- tartibli Teylor formulasini yozing.
|
2-variant.
1. Teylor formulasining Lagranj ko‘rinishdagi qoldiq hadi.
2. . f(x) = x4 - 5x3 + x2 – 3x + 4 ko‘phadni x - 4 ning darajalari bo‘yicha yoying.
3. . f(x) = xex funksiyani x0=0 dagi n-tartibli Makloren formulasini yozing.
|
3-variant.
1.Teylor formulasining Koshi ko‘rinishidagi qoldiq hadi tushunchalar.
2. . f(x) = (x2 - 3x + 1)3 ko‘phadni x ning darajalari bo‘yicha yoying.
3. . f(x) =x3 lnx funksiyani x0=1dagi n- tartibli Teylor formulasini yozing
|
4-variant.
1. Trigonometrik funksiyalar uchun Makloren formulasi.
2. funksiyani x0=4 dagi n- tartibli Teylor formulasini yozing.
3. . f(x) = sin2x funksiyani x0=0 dagi 2n- tartibli Teylor formulasini yozing.
|
5-variant.
1. f(x)=(1+x) ( ) funksiya uchun Makloren formulasi.
2. f(x)= ko’phadni x+1 ning darajalari bo’yiga yoying.
3. ko’phadni x ning darajalari bo’yicha yoying.
|
6-variant.
1.f(x)=ln(1+x) funksiya uchun Makloren formulasi.
2. f(x)= ko’phadni x-4 ning darajalari bo’yicha ayting.
3. f(x)= funksiyani dagi n-tartibli Teylor formulasini yozing.
|