10-sinf
1-variant
|x| + |y| < 100 tengsizlik nechta har xil butun yechimga ega bo'ladi?
A) 19801 B) 1000 C) 9000 D) 200 E) 19900
a = sin1 va b = log3 7 sonlarni taqqoslang.
A) a = b B) a > b C) a = b + 1 D) a < b E) taqqoslab bo'lmaydi
1
Hisoblang: − 2sin70
2sin10
A) 1 B) 1/2 C) 1/4 D) 1,5 E) 1/3
Hisoblang: arcsin + arctg
A) π/4 B) π/3 C) π/6 D) π/8 E) π/2
− 6x −5 − x2
f (x) = funksiyaning aniqlanish sohasini toping. ln(x − 2)
A) [1:5] B) (2:5] C) (1:2) D) (2:3) U (3:5] E) (-oo:1)
y=(e−1)loge−1(16−x2) funksiyaning grafigi qaysi choraklarda joylashgan.
A) II, III B) I, II C) I, II, III, IV D) III, IV E) I, IV
a ning qanday qiymatlarida y1 = x2 - 4x + 3a parabola y2 = x2 - 4x - a2 parabolaning ichida yotadi?
A) (-oo: -3) U (0: oo) B) (-3: 0) C) [0: 3] D) [-3: 4] E) (0: 3]
Soddalashtiring:
A) 2/3 B) 2 C) 1/3 D) 1 E) 3
a2 - b2 = 23 tenglikni qanoatlantiruvchi nechta (a;b) butun sonlar juftligi bor?
A) 1 B) 2 C) 4 D) ∅ E) 3 10. |x2 - 4x + 1| = x tenglama nechta ildizga ega?
A) 0 B) 2 C) 1 D) 3 E) 4
x2 − x+1 =0 tenglamaning katta va kichik ildizlari kub-
larining ayirmasini toping.
A) –2 B) –1 C) 2 D) 1 E) 1/2 ( 85 - 6)
⎧3x + (k −1)y = k +1
k ning qanday qiymatida ⎨ ⎩(k +1)x + y = 3
tenglamalar sistemasi cheksiz ko'p yechimga ega bo'ladi?
A) –1 B) –2 C) 0 D) 2 E) 1
x(x2 + 4x + 4) 25 − x2 ≥0 tengsizlikni butun yechimlari yig'indisini toping.
A) 15 B) 10 C) 8 D) 12 E) 0
N ta sonning o'rta arifmetigi 13 ga teng, boshqa M ta sonning o'rta arifmetigi 28 ga teng bo'lsa, M + N ning o'rta arifmetigi nimaga teng?
A) N/M B) (M + N)/41 C) (13N + 28M)/(M + N)
D) (13M + 28N)/(M + N) E) (13N + 28M)/(MN)
Soddalashtiring: sin2α + sin2β - sin2αsin2β + cos2αcos2β
A) 1 B) 0 C) -1 D) –2 E) 2 16. sin415°+cos415° yig'indini toping.
A) 5/6 B) 2/3 C) 7/8 D) 5/7 E) 2/7
cos25 + cos21 - cos6 - cos4 ni soddalashtiring.
A) 0 B) ½ C) -3/2 D) 1,5 E) 1
ABC to'g'ri burchakli uchburchakda AB - gipotenuza, AM va AN lar o'tkir burchaklarining bissektrisalari. Agar AB = 12, AM2 + BN2 = 169 bo'lsa, MN ning uzunligini toping.
A) 5 B) 2,5 C) –28 D) 6 E) 4
Uchburchak ichida yotgan M nuqtadan uchburchak tomonlariga parallel to'g'ri chiziqlar o'tkazilgan, natijada umumiy uchga ega bo'lgan uchta uchburchak hosil bo'ladi. Agar ularning yuzlari 3; 12; 27 ga teng bo'lsa, berilgan uchburchakning yuzi nimaga teng?
84 B) 72 C) 108 D) 144 E) 96
Rombning perimetri 52 ga teng bo'lib, diagonallari uzunliklarining yig'indisi 34 ga teng. Romb yuzini toping.
30 B) 128 C) 32 D) 120 E) 24
Ikki parallel tekisliklarni birlashtiruvchi kesmalarning uzunliklari 2:3 nisbatda. Bu kesmalarning tekisliklar bilan hosil qilgan burchaklarining nisbati 2 ga teng bo'lsa, katta burchakning kosinusini toping. A) -3/2 B) 5/7 C) 1/3 D) -2/2 E) 1/8
Dostları ilə paylaş: |