A quasilinear parabolic equation of the reaction-diffusion type with free boundary, M. S. Rasulov 1, and A. K. Norov 1


Partial Differential Equations of Parabolic Type



Yüklə 376,31 Kb.
səhifə6/6
tarix28.04.2023
ölçüsü376,31 Kb.
#104151
1   2   3   4   5   6
IRRIGATSIYA (2)

Partial Differential Equations of Parabolic Type (Prientece Hall, 1964).

  • O.A.Ladyzenskaja, V.A. Solonnikov and N.N.Ural'ceva, Linear and quasilinear equations of parabolic type (Amer. Math. Soc., Providence, RI, 1968).

  • A.Surname, Ph.d. diss., Department of Mathematics, University, Kazan (2018).




    1. Кружков С.Н. Нелинейные параболические уравнения с двумя независимыми переменными Тр. ММО. 1967. 16, No. С.329-346.

    2. Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа.М.: Наука, 1967. 736 с.

    3. Фридман А. Уравнения с частными производными параболического типа. M.: Мир, 1968. 428 с.

    4. Aronson D.G., Weinberger H.F. Nonlinear diffusion in population genetics, combustion and nerve pulse propogation // Partial Differential Equations and Related Topics. Lecture Notes in Mathematics 1975. 446. C.5-49.

    5. Asrakulova D.S., Elmurodov A.N. A reaction-diffusion-advection competition model with a free boundary // Uzb. Math. J. 2021.3.

    6. Cantrell R.S, Cosner C. Spatial ecology via reaction-diffusion equations.England: Wiley, 2003.P. 428.

    7. Ciliberto C. Formule di maggiorazione e teoremi di esistenza per le soluzioni delle equazioni paraboliche in due variabili // Ricerche di Matem.1954. 82. C.40-75.

    8. Du Y., Lin Z.G. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary // SIAM J.Math.Anal.2010.4.C.377-405

    9. Du Y., Lin Z.G. The diffusive competition model with a free boundary: invasion of a superior or inferior competitor // Discrete Contin. Dyn. Syst. Ser. B.2014.19.C.3105-3132.

    10. Gu H, Lin Z. G and Lou B. D. Long time behavior for solutions of Fisher-KPP equation with advection and free boundaries // J. Funct. Anal.2015.269.C.1714-1768.

    11. Guo J.S., Wu C.H. On a free boundary problem for a two-species weak competition system // J Dyn Diff Equat. 2012.24.C.873-895.

    12. Guo J.S., Wu C.H. Dynamics for a two-species competition-diffusion model with two free boundaries // Nonlinearity.2015.28. C.1-27.

    13. Lockwood M.F, Hoopes M. F., Marchetti M. P. Invasion Ecology.Oxford: Blackwell Publishing, 2013. P. 444.

    14. Pao C.V. Nonlinear Parabolic and Elliptic Equations. New York: Plenum Press.1992. P. 777.

    15. Ren X., Liu L. A weak competition system with advection and free boundaries // J.Math.Anal.Appl.2018.463. C.1006-1039.

    16. Shigesada N., Kawasaki K. Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution Oxford: Oxford University Press.1997. P. 224.

    17. Takhirov J.O. A free boundary problem for a reaction-diffusion equation in biology // Indian J. Pure Appl. Math.2019.50.C.95-112.

    18. Takhirov J.O., Rasulov M.S. Problem with free boundary for systems of equations of reaction-diffusion type // Ukr. Math. J.2018.69.C.1968-1980.

    19. Wang R., Wang L., Wang Zh. Free boundary problem of a reaction-diffusion equation with nonlinear convection term // J. Math.Anal.Appl.2018. 467.C.1233-1257.

    20. Wang M., Zhao J. Free Boundary Problems for a Lotka-Volterra Competition System // Jour. Dyn.Differ. Equ. 2014.26.C.1-21.

    21. Wang M., Zhang Y. Two kinds of free boundary problems for the diffusive prey-predator model // Nonlinear Anal. Real World Appl. 2015.24.C.73-82.

    22. Wu C.H. The minimal habitat size for spreading in a weak competition system with two free boundaries // J.Differential Equation.2015.259.C.873-897.

    Yüklə 376,31 Kb.

    Dostları ilə paylaş:
  • 1   2   3   4   5   6




    Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
    rəhbərliyinə müraciət

    gir | qeydiyyatdan keç
        Ana səhifə


    yükləyin