Author Contributions:
All authors contributed equally and scientifically. All authors have read and
agreed to the published version of the manuscript.
Funding:
No specific funding received for this research.
Acknowledgments:
This research is supported by Artificial Intelligence & Data Analytics Lab (AIDA)
CCIS Prince Sultan University, Riyadh, Saudi Arabia. The authors also would like to acknowl-
edge the support of Prince Sultan University for paying the Article Processing Charges (APC) of
this publication.
Conflicts of Interest:
There is no conflict of interest to declare.
Agronomy
2022
,
12
, 127
19 of 21
References
1.
Mukhtar, H.; Khan, M.Z.; Khan, M.U.G.; Saba, T.; Latif, R. Wheat Plant Counting Using UAV Images Based on Semi-supervised
Semantic Segmentation. In Proceedings of the 2021 1st International Conference on Artificial Intelligence and Data Analytics
(CAIDA), Riyadh, Saudi Arabia, 6–7 April 2021; pp. 257–261.
2.
Khan, M.A.; Akram, T.; Sharif, M.; Alhaisoni, M.; Saba, T.; Nawaz, N. A probabilistic segmentation and entropy-rank correlation-
based feature selection approach for the recognition of fruit diseases.
EURASIP J. Image Video Process.
2021
,
2021
, 14. [
CrossRef
]
3.
Khan, M.A.; Akram, T.; Sharif, M.; Awais, M.; Javed, K.; Ali, H.; Saba, T. CCDF: Automatic system for segmentation and
recognition of fruit crops diseases based on correlation coefficient and deep CNN features.
Comput. Electron. Agric.
2018
,
155
,
220–236. [
CrossRef
]
4.
Safdar, A.; Khan, M.A.; Shah, J.H.; Sharif, M.; Saba, T.; Rehman, A.; Javed, K.; Khan, J.A. Intelligent microscopic approach for
identification and recognition of citrus deformities.
Microsc. Res. Tech.
2019
,
82
, 1542–1556. [
CrossRef
] [
PubMed
]
5.
Sinha, B.B.; Dhanalakshmi, R. Recent advancements and challenges of Internet of Things in smart agriculture: A survey.
Futur.
Gener. Comput. Syst.
2022
,
126
, 169–184. [
CrossRef
]
6.
Kolivand, H.; Fern, B.M.; Saba, T.; Rahim, M.S.M.; Rehman, A. A New Leaf Venation Detection Technique for Plant Species
Classification.
Arab. J. Sci. Eng.
2019
,
44
, 3315–3327. [
CrossRef
]
7.
Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Wang, X. Internet of Things for the Future of Smart Agriculture: A Comprehensive
Survey of Emerging Technologies.
IEEE/CAA J. Autom. Sin.
2021
,
8
, 718–752. [
CrossRef
]
8.
Kianat, J.; Khan, M.A.; Sharif, M.; Akram, T.; Rehman, A.; Saba, T. A joint framework of feature reduction and robust feature
selection for cucumber leaf diseases recognition.
Optik
2021
,
240
, 166566. [
CrossRef
]
9.
Saba, T.; Rehman, A.; AlGhamdi, J.S. Weather forecasting based on hybrid neural model.
Appl. Water Sci.
2017
,
7
, 3869–3874.
[
CrossRef
]
10.
Sharma, Y.; Tyagi, V.; Datta, P. IoT based smart agriculture monitoring system.
Int. J. Innov. Technol. Explor. Eng.
2020
,
9
, 325–328.
11.
Fern, B.M.; Rahim, M.S.M.; Saba, T.; Almazyad, A.S.; Rehman, A. Stratified classification of plant species based on venation state.
Biomed. Res.
2017
,
28
, 5660–5663.
12.
Sudarshan, K.; Hegde, R.R.; Sudarshan, K.; Patil, S. Smart agriculture monitoring and protection system using IoT.
Perspect.
Commun. Embed. Syst. Signal Process. PiCES
2019
,
2
, 308–310.
13.
Rajaram, K.; Sundareswaran, R. IoT Based Crop-Field Monitoring and Precise Irrigation System Using Crop Water Requirement.
In
International Conference on Computational Intelligence in Data Science
; Springer: Cham, Switzerland, 2020; pp. 291–304.
14.
Abba, S.; Wadumi Namkusong, J.; Lee, J.A.; Liz Crespo, M. Design and Performance Evaluation of a Low-Cost Autonomous
Sensor Interface for a Smart IoT-Based Irrigation Monitoring and Control System.
Sensors
2019
,
19
, 3643. [
CrossRef
]
15.
Kamaruddin, F.; Abd Malik, N.N.N.; Murad, N.A.; Latiff, N.M.A.A.; Yusof, S.K.S.; Hamzah, S.A. IoT-based intelligent irrigation
management and monitoring system using Arduino.
Telkomnika
2019
,
17
, 2378–2388. [
CrossRef
]
16.
Akshaya, M.; Kavipriya, P.R.; Yogapriya, M.; Karthikamani, R. IoT based fertilizer injector for agricultural plants.
Int. Res. J. Eng.
Technol.
2020
,
7
, 2950–2954.
17.
Reddy, H.S.; Hedge, G.; Chinnayan, D.R. IOT based leaf disease detection and fertilizer recommendation.
Int. J. Innov. Technol.
Explor. Eng.
2019
,
9
, 132–136.
18.
Chavan, R.; Deoghare, A.; Dugar, R.; Karad, P. IoT Based Solution for Grape Disease Prediction Using Convolutional Neural
Network and Farm Monitoring.
Int. J. Sci. Res. Eng. Dev.
2019
,
2
, 494–500.
19.
Bhoi, S.K.; Jena, K.K.; Panda, S.K.; Long, H.V.; Kumar, R.; Subbulakshmi, P.; Bin Jebreen, H. An Internet of Things assisted
Unmanned Aerial Vehicle based artificial intelligence model for rice pest detection.
Microprocess. Microsyst.
2021
,
80
, 103607.
[
CrossRef
]
20.
Ganesh, P.; Tamilselvi, K.; Karthi, P. Crop prediction by monitoring temperature and rainfall using decision tree with IoT and
cloud-based system.
Proceedings of the International Conference on Computational Intelligence and Data Science
, Gurugram, India, 7–8
April 2018, 1–9.
21.
Tolentino, L.K. Yield evaluation of Brassica rapa, Lactuca sativa, and Brassica integrifolia using image processing in an IoT-based
aquaponics with temperature-controlled greenhouse.
AGRIVITA J. Agric. Sci.
2020
,
42
, 393–410. [
CrossRef
]
22.
Visconti, P.; Giannoccaro, N.I.; de Fazio, R.; Strazzella, S.; Cafagna, D. IoT-oriented software platform applied to sensors-based
farming facility with smartphone farmer app.
Bull. Electr. Eng. Inform.
2020
,
9
, 1095–1105. [
CrossRef
]
23.
Kodali, R.K.; Rajanarayanan, S.C.; Boppana, L. IoT based Weather Monitoring and Notification System for Greenhouses.
In Proceedings of the 2019 11th International Conference on Advanced Computing (ICoAC), Chennai, India, 18–20 December
2019; pp. 342–345.
24.
Ariffin, M.A.M.; Ramli, M.I.; Amin, M.N.M.; Ismail, M.; Zainol, Z.; Ahmad, N.D.; Jamil, N. Automatic Climate Control
for Mushroom Cultivation Using IoT Approach. In Proceedings of the 2020 IEEE 10th International Conference on System
Engineering and Technology (ICSET), Shah Alam, Malaysia, 9 November 2020; pp. 123–128.
25.
Nagamani, P.; Sundari Jahnavi, M.; Govind Raju, N.N.; Bhanu Shankar, A.; Govind Reddy, K.S. Smart Hydroponics Water
Monitoring Using IoT.
J. Emerg. Technol. Innov. Res.
2019
,
6
, 114–120.
26.
Jayasuriya, Y.P.; Elvitigala, C.S.; Wamakulasooriya, K.; Sudantha, B. Low Cost and IoT Based Greenhouse with Climate Monitoring
and Controlling System for Tropical Countries. In Proceedings of the 2018 International Conference on System Science and
Engineering (ICSSE), New Taipei, Taiwan, 28–30 June 2018; pp. 1–6.
Agronomy
2022
,
12
, 127
20 of 21
27.
Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.;
Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A
comprehensive review.
Internet Things
2020
, 100187. [
CrossRef
]
28.
Odesola, D.F.; Olivarez, R.; Ramos, A.; Malolos, D.; Patrick, V.; Balba, N.P. Internet of things (IoT) based home automated weather
monitoring system.
LPU-Laguna J. Eng. Comput. Stud.
2019
,
4
, 1–10.
29.
Fu, L.; Gao, F.; Wu, J.; Li, R.; Karkee, M.; Zhang, Q. Application of consumer RGB-D cameras for fruit detection and localization
in field: A critical review.
Comput. Electron. Agric.
2020
,
177
, 105687. [
CrossRef
]
30.
Dutta, J.; Dutta, J.; Gogoi, S. Smart farming: An opportunity for efficient monitoring and detection of pests and diseases.
J.
Entomol. Zool. Stud.
2020
,
8
, 2352–2359.
31.
Maslekar, N.V.; Kulkarni, K.P.; Chakravarthy, A.K. Application of Unmanned Aerial Vehicles (UAVs) for Pest Surveillance,
Monitoring and Management. In
Innovative Pest Management Approaches for the 21st Century
; Springer: Berlin, Germany, 2020; pp.
27–45.
32.
Gao, D.; Sun, Q.; Hu, B.; Zhang, S. A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and
Unmanned Aerial Vehicles.
Sensors
2020
,
20
, 1487. [
CrossRef
]
33.
Tang, Y.; Chen, M.; Wang, C.; Luo, L.; Li, J.; Lian, G.; Zou, X. Recognition and Localization Methods for Vision-Based Fruit Picking
Robots: A Review.
Front. Plant Sci.
2020
,
11
, 510. [
CrossRef
] [
PubMed
]
34.
Kang, H.; Zhou, H.; Wang, X.; Chen, C. Real-Time Fruit Recognition and Grasping Estimation for Robotic Apple Harvesting.
Sensors
2020
,
20
, 5670. [
CrossRef
]
35.
Ogorodnikova, O.M.; Ali, W. Method of ripe tomato detecting for a harvesting robot. In
AIP Conference Proceedings
; AIP Publishing
LLC: Melville, NY, USA, 2019.
36.
Yeshmukhametov, A.; Al Khaleel, L.; Koganezawa, K.; Yamamoto, Y.; Amirgaliyev, Y.; Buribayev, Z. Designing of CNC Based
Agricultural Robot with a Novel Tomato Harvesting Continuum Manipulator Tool.
Int. J. Mech. Eng. Robot. Res.
2020
,
9
, 876–881.
[
CrossRef
]
37.
Zhang, W.; Gong, L.; Chen, S.; Wang, W.; Miao, Z.; Liu, C. Autonomous Identification and Positioning of Trucks during
Collaborative Forage Harvesting.
Sensors
2021
,
21
, 1166. [
CrossRef
]
38.
Li, B.; Zhou, A.; Yang, C.; Zheng, S. The Design and Realization of fruit Harvesting Robot Based on IOT. In
Proceedings of the
2016 International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2016)
; Atlantis Press:
Amstelkade, AV, USA, 2016.
39.
Rahaman, S.H.; Biswas, S. Advantages of Internet of Things (IoT) and It’s Applications in Smart Agriculture System.
Int. Res. J.
Adv. Sci. Hub
2020
,
2
, 4–10. [
CrossRef
]
40.
Mishra, D.; Natalizio, E. A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimen-
tal advancements.
Comput. Netw.
2020
,
182
, 107451. [
CrossRef
]
41.
Ullo, S.L.; Sinha, G.R. Advances in Smart Environment Monitoring Systems Using IoT and Sensors.
Sensors
2020
,
20
, 3113.
[
CrossRef
]
42.
Madushanki, R.; Wirasagoda, H.; Halgamuge, M. Adoption of the Internet of Things (IoT) in agriculture and smart farming
towards urban greening: A review.
Int. J. Adv. Comput. Sci. Appl. (IJACSA)
2019
, 1. [
CrossRef
]
43.
Vikranth, K. An Implementation of IoT and Data Analytics in Smart Agricultural System—A Systematic Literature Review.
Int. J.
Manag. Technol. Soc. Sci.
2021
,
6
, 41–70. [
CrossRef
]
44.
Khan, M.A.; Akram, T.; Sharif, M.; Saba, T. Fruits diseases classification: Exploiting a hierarchical framework for deep features
fusion and selection.
Multimed. Tools Appl.
2020
,
79
, 25763–25783. [
CrossRef
]
45.
Singh, D.; Jain, N.; Jain, P.; Kayal, P.; Kumawat, S.; Batra, N. PlantDoc: A dataset for visual plant disease detection. In Proceedings
of the 7th ACM IKDD CoDS and 25th COMAD, Hyderabad, India, 5–7 January 2020; pp. 249–253.
46.
Yan, Q.; Yang, B.; Wang, W.; Wang, B.; Chen, P.; Zhang, J. Apple Leaf Diseases Recognition Based on an Improved Convolutional
Neural Network.
Sensors
2020
,
20
, 3535. [
CrossRef
]
47.
Alruwaili, M.; Alanazi, S.; Abd, S.; Shehab, A. An Efficient Deep Learning Model for Olive Diseases Detection.
Int. J. Adv. Comput.
Sci. Appl.
2019
,
10
, 486–492. [
CrossRef
]
48.
Vij, A.; Vijendra, S.; Jain, A.; Bajaj, S.; Bassi, A.; Sharma, A. IoT and Machine Learning Approaches for Automation of Farm
Irrigation System.
Procedia Comput. Sci.
2020
,
167
, 1250–1257. [
CrossRef
]
49.
Mohanty, S.P.; Hughes, D.P.; Salath
é
, M. Using Deep Learning for Image-Based Plant Disease Detection.
Front. Plant. Sci.
2016
,
7
, 1419. [
CrossRef
] [
PubMed
]
50.
Cruz, A.C.; Luvisi, A.; De Bellis, L.; Ampatzidis, Y. X-FIDO: An Effective Application for Detecting Olive Quick Decline Syndrome
with Deep Learning and Data Fusion.
Front. Plant. Sci.
2017
,
8
, 1741. [
CrossRef
] [
PubMed
]
51.
Rauf, H.T.; Saleem, B.A.; Lali, M.I.U.; Khan, M.A.; Sharif, M.; Bukhari, S.A.C. A citrus fruits and leaves dataset for detection and
classification of citrus diseases through machine learning.
Data Brief.
2019
,
26
, 104340. [
CrossRef
]
52.
Kuaban, G.S.; Czekalski, P.; Molua, E.L.; Grochla, K.
An Architectural Framework Proposal for IoT Driven Agriculture
; Springer:
Berlin, Germany, 2019; pp. 18–33.
53.
Pathak, A.; Uddin, M.A.; Abedin, J.; Andersson, K.; Mustafa, R.; Hossain, M.S. IoT based Smart System to Support Agricultural
Parameters: A Case Study.
Procedia Comput. Sci.
2019
,
155
, 648–653. [
CrossRef
]
54.
Thapa, R.; Snavely, N.; Belongie, S.; Khan, A. The plant pathology 2020 challenge dataset to classify foliar disease of apples.
arXiv
Dostları ilə paylaş: |