X uzluksiz tasodifiy miqdorning [a,b] oraliqqa tegishli qiymatni qabul qilishi ehtimolligi zichlik funksiyaning a dan b gacha olingan aniq integralga teng, ya’ni
Uzluksiz tasodifiy miqdor taqsimot funksiyasi zichlik funksiya orqali quyidagicha ifodalanadi:
Zichlik funksiyasidan dan gacha olingan xosmas integral birga tengdir
1. Agar X uzluksiz tasodifiy miqdorning mumkin bo‘lgan barcha qiymatlari tegishli bo‘lgan oraliqda ehtimolliklarning taqsimot zichligi o‘zgarmas, ya’ni da bo‘lsa va bu oraliqdan tashqarida esa ( o‘zgarmas) bo‘lsa, X tasodifiy miqdor taqsimoti tekis deyiladi.
formula asosida taqsimot funksiyasini topish mumkin:
X uzluksiz tasodifiy miqdorning (a,b) oraliqqa tegishli oraliqda tushish ehtimolligi
(bu yerda — erkli parametrlar) ko‘rinishda berilgan bo‘lsa, X uzluksiz tasodifiy miqdorning taqsimoti normal deyiladi.
Normal taqsimlangan X uzluksiz tasodifiy miqdorning berilgan oraliqqa tushish ehtimolligi ushbu formula bo‘yicha hisoblanadi:
bu yerda
-Laplas funksiyasi.
Chetlanishning absolyut qiymati musbat sondan kichik bo‘lishi ehtimolligi
ga teng.
3. Agar zichlik funksiyasi
(bu yerda erkli parametr) ko‘rinishda berilgan bo‘lsa, uzluksiz tasodifiy miqdorning taqsimoti ko‘rsatkichli deyiladi:
formula asosida taqsimot funksiyasini topish mumkin:
uzluksiz tasodifiy miqdor ko‘rsatkichli taqsimotga ega bo‘lsa, berilgan oraliqqa tushish ehtimolligi uchun ushbu formula o‘rinli:
Agar T – biror elementning to‘xtovsiz ishlash davomiyligi, esa to‘xtab qolishlar intensivligi (tezligi)ni ifodalovchi uzluksiz tasodifiy miqdor bo‘lsa, u holda bu elementning to‘xtovsiz ishlash vaqti ni taqsimot funksiyasi
,
bo‘lgan (u vaqt davomida elementning to‘xtab qolish ehtimolligini aniqlaydi) ko‘rsatkichli qonun bo‘yicha taqsimlangan tasodifiy miqdor deb hisoblash mumkin.
Ishonchlilik funksiyasi elementning vaqt ichida to‘xtovsiz ishlash ehtimolligini aniqlaydi:
.
Matematik kutilish va dispersiya:
1) tekis taqsimlangan uzluksiz tasodifiy miqdor uchun: