List of Figures 5.1
X-ray picture and old tomography. . . . . . . . . . . . . . . . . . . . . 21
5.2
X-ray CT. Parallel beam geometry. . . . . . . . . . . . . . . . . . . . . 23
5.3
X-ray CT. Fan beam and cone beam geometry . . . . . . . . . . . . 24
5.4
Parametrization of a line,
x · ω =
t . . . . . . . . . . . . . . . . . . . . 28
5.5
Sinogram (density plot of the X-ray transform) of two squares
with parallel sides touching at a vertex. . . . . . . . . . . . . . . . . . 28
5.6
Geometry of the backprojection. . . . . . . . . . . . . . . . . . . . . . 35
5.7
A phantom (left) and its reconstruction (right). . . . . . . . . . . . . 39
6.1
SPECT procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2
PET procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3
Two half-rays in PET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.1
Full data: phantom and its reconstruction. . . . . . . . . . . . . . . . 65
7.2
A disk phantom and its reconstruction with an undersampling
in
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3
Reconstruction with too few (20) projections. . . . . . . . . . . . . 66
7.4
A phantom and its reconstruction with a 120 degree observa-
tion angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.5
Exterior problem. A phantom, its exterior reconstruction, and
reconstruction showing the black central region that was avoided 67
7.6
X-ray projection of the characteristic function of the unit disk
at the origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.7
A phantom and its local reconstruction. One sees the bound-
aries sharpened . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
11.1
TAT
/
PAT procedure with a partially surrounding acquisition
surface
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.2
The observation surface
S and the domain
Ω containing the ob-
ject to be imaged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.3
Coxeter cross of
N lines. . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.4
The conjectured structure of a most general nonuniqueness set
in three dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.5
Reconstruction from incomplete data using a closed-form in-
version formula in two dimensions . . . . . . . . . . . . . . . . . . . . 113
xiii
Downloaded 11/25/23 to 84.54.70.76 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy
xiv
List of Figures
11.6
(a) Some rays starting along the interval
x ∈ [
− 0.7,
− 0.2
]
in the
vertical directions escape on the right; (b) a flat phantom with
“invisible wavefront”; (c)–(f) propagation of the flat front: most
of the energy of the signal leaves the square domain through the
“hole” on the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.7
Reconstruction with the same sound speed as in Fig. 11.6 . . . . . 119
11.8
Reconstruction with the same sound speed as in Fig. 11.6 . . . . . 120
11.9
Reconstruction of a square phantom from full data in the pres-
ence of a trapping parabolic sound speed . . . . . . . . . . . . . . . . 121
11.10
Example of a reconstruction using formula (11.25) . . . . . . . . . 133
11.11
Examples of reconstruction from incomplete data using the tech-
nique of
[
464
]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.1
The AET procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
12.2
An example of AET reconstruction . . . . . . . . . . . . . . . . . . . 143
12.3
An N-shaped pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.4
Comparison of AET reconstructions using ideal focusing ver-
sus synthetic focusing (of spherical pulse waves) . . . . . . . . . . . 146
12.5
UMOT reconstructions: Top row—the phantoms; middle row—
initial run of the algorithms; bottom row—reconstructions af-
ter 40 iterations (see
[
15
]
). . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.1
A function “invisible” at the given sequence of points. . . . . . . . 177
Downloaded 11/25/23 to 84.54.70.76 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy
Preface This text addresses the topics covered in ten lectures delivered by the author
during the 2012 CBMS-NSF conference “Mathematical methods of computed to-
mography.” The goals of the lectures were