Chiziqli algebra va analitik geometriya


Algebraik ko’rinishdagi kompleks sonlar



Yüklə 0,57 Mb.
səhifə2/4
tarix19.02.2022
ölçüsü0,57 Mb.
#52820
1   2   3   4
algebra

2. Algebraik ko’rinishdagi kompleks sonlar

ustida to’rt amal.

Kompleks sonlar ustidagi amallar ko’phadlar ustidagi amallarni bajarish qoidalari bo’yicha o’tkaziladi, bunda i2 har safar -1 ga almashtiriladi.



1. Qo’shish amali. α1=a1+b1i va α2=a2+b2i kompleks sonlarning yig’indisi deb haqiqiy qismi qo’shiluvchi kompleks sonlar haqiqiy qismlarining yig’indisiga, mavhum qismi ularning mavhum qismlarining yig’indisiga teng bo’lgan α kompleks songa aytiladi va u quyidagicha yoziladi:

α=( a1+ a2) + (b1+ b2)i

Misol: (5-3i) + (3+3i)=(5+3) + (3-3)i= 8

(2+5i) + (-2+5i)=(2-2) + (5+5)i= 10i



2. Ayirish amali. α1=a1+b1i kompleks sondan α2=a2+b2i kompleks sonning ayirmasi deb α1 va α2 ga qarama-qarshi bo’lgan – α2 sonlarning yig’indisidan iborat bo’lgan kompleks songa aytiladi:

α= α1 + (-α2)= ( a1 - a2) + (b1 - b2)i

Misol: (10+2i) – (3-4i)= (10-3) – (2+4)i= 7+6i

(4+5i) – (3+5i)= (4-3) – (5-5)i= 1



3. Ko’paytirish amali. α1=a1+b1i va α2=a2+b2i kompleks sonlarning ko’paytmasi deb

α= α1× α2=(a1a2b1b2) + (a1b2 + a2b1)i

kompleks songa aytiladi. Kompleks sonlarni ko’paytirganda i2=-1, i3=-i, i4= i2×i2=1, i5=i va hokazo, umuman k butun bo’lganda i4k=1, i4k+1=i, i4k+2=-1, i4k+3=-i ekanligini e’tiboga olish kerak.

Misol: (5+2i)(3-4i)= 23-14i

(2+i)(2-i)= 4+1=5

4. Bo’lish amali. . α1=a1+b1i kompleks sonning α2=a2+b2i kompleks songa bo’linmasi deb α1= α× α2 tenglikni qanoatlantiradigan α kompleks songa aytiladi va u quyidagi formula bilan topiladi:

Misol:

O’rin almashtirish, gruppalash qonuni kompleks sonlarda ham to’g’ri:

(a+bi) + (c+di) = (c+di) + (a+bi)

(a+bi) · (c+di) = (c+di) · (a+bi)

(a+bi) + (c+di) + (e+fi) = (a+bi) + [(c+di) + (e+fi)]


Yüklə 0,57 Mb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin