Chiziqli tenglamalar sistemasi va ularni yechish usullari. Reja: Umumiy tushunchalar


Chiziqli tenglamalar sistemasining Gauss usuli



Yüklə 222,38 Kb.
səhifə3/5
tarix15.06.2023
ölçüsü222,38 Kb.
#130449
1   2   3   4   5
Chiziqli tenglamalar sistemasi va ularni yechish usullari Reja

Chiziqli tenglamalar sistemasining Gauss usuli

Biz endi chiziqli tenglamalar sistemasini yechishning Gauss usulini ko‘rib chiqamiz. Bu usulda noma’lumlarni ketma-ket yo‘qotish bilan yechim topildi.


Bu usulni ko‘rishdan avval biz kengaytirilgan matritsa usulini ko‘rib chiqamiz.


Bizga n o‘zgaruvchili quyidagi tenglamalar sistemasi berilgan bo‘lsin:

Bu sistemaning kengaytirilgan matritsasi deb quyidagi matritsaga aytiladi:


Biz hozir berilgan sistemaning kengaytirilgan matritsasi qanday qurilishini ko‘rsatamiz. Quyidagi sistema berilgan bo‘lsin:


Uning kengaytirilgan matritsasi quyidagi ko‘rinishda bo‘ladi:


Kengaytirilgan matritsani qurish uchun noma’lumlar koeffitsientlaridan tuzilgan matritsaning o‘ng tomoniga ozod hadlardan tuzilgan yangi ustun qo‘shiladi. Usulning asosiy goyasi berilgan sistemani unga teng kuchli bo‘lgan, lekin yechish oson bo‘lgan sistema bilan almashtirib, keyin hosil bo‘lgan sistemani yechishdan iborat. Yangi sistema odatda quyidagi amallarni bajarish natijasida bo‘ladigan bir nechta qadamlardan keyin hosil bo‘ladi:





  1. Tenglamani 0 dan farqli o‘zgarmas songa ko‘paytirish.

  2. Ikkita tenglamaning o‘rnini almashtirish.

  3. Bir tenglamaga karrali tenglamani ikkinchisiga qo‘shish.

Kengaytirilgan matritsaning satrlari sistemadagi tenglamalarga mos kelgani uchun yuqoridagi uchta amal kengaytirilgan maritsa uchun quyidagicha bo‘ladi:





  1. Satrni 0 dan farqli o‘zgarmas songa ko‘paytirish.

  1. Ikkita satrning o‘rnini almashtirish.

  2. Bir satrga karrali satrni ikkichisiga qo‘shish.

Bu amallar satrlar ustidaga elementar almashtirishlar deyiladi. Quyidagi misolni Yechish orqali bu amallarni qanday qo‘llanilishini ko‘rsatamiz.





Yüklə 222,38 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin