Development of novel plastic scintillators based on polyvinyltoluene for the hybrid j-pet/mr tomograph



Yüklə 3,22 Mb.
Pdf görüntüsü
səhifə3/53
tarix17.07.2023
ölçüsü3,22 Mb.
#136775
1   2   3   4   5   6   7   8   9   ...   53
1. Introduction 
Positron Emission Tomography (PET) has been a research tool for about fifty 
years. Nowadays, it is well known mainly from the application to clinical medicine. This 
technique enables quantitative, three-dimensional images for the study of physiological 
and biochemical processes occurring in the human body.
PET scanners are valuable diagnostic devices because of the ability of cancer 
detection even in its early stages, what allows to take an immediate treatment increasing 
the chances of the patient for the recovery. That also enables adjustment of the proper 
therapy and judge of its effectiveness. PET is used for diagnosis of many other diseases, 
like Alzheimer, Parkinson, cardiology, neurological and gastrological diseases.
At the Jagiellonian University, a novel PET scanner has been designed and built. 
The device is called J-PET (Jagiellonian PET). The main difference between J-PET and 
conventional PET scanners is utilization of long plastic scintillators strips instead of small 
inorganic crystals. Scintillators are the key part of tomography scanners. They enable 
detection of ionizing radiation which is emitted from the patient during the examination.
In the PET technique a patient is administered radiopharmaceuticals emitting positrons. 
During annihilation of incident positrons with electrons from human body, gamma quanta 
are created. They interact with the scintillating material and as a result light pulses are 
produced. The light is subsequently detected by photomultipliers connected to scintillators. 
Plastic scintillators utilized in J-PET device decreases costs of the scanner significantly and 
open perspectives for examination of a large part of human body during one scan. 
J-PET technology also opens perspective for the simultaneous PET and Magnetic 
Resonance Imaging (PET/MRI) and for the construction of PET inserts which may be 
adapted to nowadays MR scanners held by hospitals. Such hybrid device, J-PET/MR 
scanner will enable simultaneous anatomical and functional imaging. However several 
changes should be made in the first J-PET prototype to be MR compatible, e.g. it is 
essential to exchange traditional vacuum photomultipliers to digital silicon photodetectors.
Proper scintillators need to be adjusted to the hybrid J-PET/MR scanner. They 
should be characterized by several parameters: high light output, long attenuation length 
and their emission spectra should fit quantum efficiency of silicon photomultipliers. Light 
output characterizes the light emission efficiency of scintillators. Long attenuation length 



of light in the scintillating material is important especially for J-PET/MRI because of the 
requirement of application of long scintillator strips, through which light needs to be 
transferred effectively. 
The aim of the dissertation was development of novel plastic scintillators to
J-PET/MR scanner and characterization of their properties.
The thesis which will be proved is as follows: in laboratory condition it is possible 
to obtain plastic scintillator characterized by high light output, weak light absorption in the 
material and with emission spectrum matched to quantum efficiency of silicon 
photomultipliers. 
This thesis concentrates on development of novel plastic scintillator, referred to as 
J-PET scintillator, and characterization of its properties. The manuscript is organized in the 
following way: 

Chapter 2 outlines theoretical motivation for conducted investigations and 
introduces novel J-PET concept. 

Chapter 3 comprises explanation of scintillation mechanism and includes 
description of state of the art plastic scintillator offered by worldwide companies. 
Current application of novel scintillating dopant is described as well. 

In Chapter 4, experimental methods are shortly described. 

Further on, in Chapter 5, three chemical compounds, tested as wavelength shifter, 
as well as their synthesis schemes are described. Plastic scintillators containing 
novel dopants were prepared and preliminary results of their performance are 
presented. Scintillators with 2-(4-styrylphenyl)benzoxazole, acted at most 
efficiently and were a subject of research presented in next chapters.

Chapter 6 includes detailed information about bulk polymerization process, which 
is used for development of J-PET plastic scintillators. 

In Chapter 7, optical, spectral and timing properties of novel plastic scintillators are 
described. Optical adjustment of particular components of scintillators, regarding 
their emission and absorption spectra are discussed. The most important parameter 
characterizing scintillators performance: the light output was determined and 
evaluated with respect to commercially available scintillators. Timing properties of 
J-PET scintillators and comparison to commercial scintillators in view of 
application in the J-PET system are shown.




In Chapter 8, structure of J-PET scintillators were analyzed. Molecular weight was 
estimated, proving assurance of maximal light output considering polymer structure 
impact. Further on, investigations of scintillators structure with Positron 
Annihilation Lifetime Spectroscopy (PALS) and Differential Scanning Calorimetry 
(DSC) were presented and compared. 

Chapter 9 comprises description of development of plastic scintillator strips with 
large dimensions. 

In Chapter 10, summary and final conclusions followed by perspectives of further 
researches are presented. 

Yüklə 3,22 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   53




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin