Differensial hisobning asosiy teoremalari va tatbiqlari



Yüklə 230,5 Kb.
səhifə4/6
tarix23.07.2023
ölçüsü230,5 Kb.
#137205
1   2   3   4   5   6
DIFFERENSIAL HISOBNING ASOSIY TEOREMALARI. ANIQMASLIKLARNI OCHISH.TEYLOR FORMULASI.BA`ZI FUNKSIYALARNI TEYLOR FORMULASI BO`YICHA YOYISH.

4. Koshi teoremasi
Teorema (Koshi teoremasi). Agar [a,b] kesmada f(x) va g(x) berilgan bo‘lib,
1) [a,b] da uzluksiz;
2) (a,b) intervalda f’(x) va g‘(x) mavjud, hamda g‘(x)0 bo‘lsa, u holda hech bo‘lmaganda bitta shunday c (a) nuqta topilib,
(1.4)
tenglik o‘rinli bo‘ladi.
Isbot. Ravshanki, (1.4) tenglik ma’noga ega bo‘lishi uchun g(b)g(a) bo‘lishi kerak. Bu esa teoremadagi g‘(x)0, x(a;b) shartdan kelib chiqadi. Haqiqatdan ham, agar g(a)=g(b) bo‘lsa, u holda g(x) funksiya Roll teoremasining barcha shartlarini qanoatlantirib, biror c(a;b) nuqtada g‘(c)=0 bo‘lar edi. Bu esa x(a;b) da g‘(x)0 shartga ziddir. Demak, g(b)g(a).
Endi yordamchi
funksiyani tuzaylik.
Shartga ko‘ra f(x) va g(x) funksiyalar [a,b] da uzluksiz va (a,b) intervalda differensiyalanuvchi bo‘lgani uchun F(x) birinchidan [a,b] kesmada uzluksiz funksiyalarning chiziqli kombinatsiyasi sifatida uzluksiz, ikkinchidan (a,b) intervalda

hosilaga ega.
So‘ngra F(x) funksiyaning x=a va x=b nuqtalardagi qiymatlarini hisoblaymiz: F(a)F(b)0. Demak, F(x) funksiya [a,b] kesmada Roll teoremasiinng barcha shartlarini qanoailantiradi. Shuning uchun hech bo‘lmaganda bitta shunday c (a) nuqta topiladiki, F’(c)0 bo‘ladi.
Shunday qilib,

va bundan (1.4) tenglikning o‘rinli ekani kelib chiqadi. Isbot tugadi.
Isbotlangan (1.4) tenglik Koshi formulasi deb ham ataladi.
Endi Koshi teoremasining geometrik ma’nosini aniqlaymiz. Aytaylik x=(t), y=f(t), atb tekislikdagi chiziqning parametrik tenglamasi bo‘lsin. Shuningdek chiziqda t=a ga mos keluvchi nuqtani A((a),f(a)), t=b ga mos keluvchi nuqtani B((b),f(b)) kabi belgilaylik. (22-rasm).
U holda (1.4) formulaning chap qismi AB vatarning burchak koeffitsientini, o‘ng tomoni esa egri chiziqqa parametrning t=c qiymatiga mos keladigan nuqtasida 22-rasm
o‘tkazilgan urinmaning burchak koeffitsientini anglatadi. Demak, Koshi formulasi AB yoyning AB vatarga parallel bo‘lgan urinmasining mavjudligini ta’kidlaydi ekan.
Misol. Ushbu f(x)=x2 va (x)= funksiyalar uchun [0,4] kesmada Koshi formulasini yozing va s ni toping.
Yechish. berilgan funksiyalarning kesma uchlaridagi qiymatlari va hosilalarini topamiz: f(0)=0, f(4)=16, (0)=0, (4)=2; f’(x)=2x, ’(x)= . Bulardan foydalanib Koshi formulasini yozamiz:
, bundan 4s =8 yoki s =2. Demak s= .



Yüklə 230,5 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin