DIFFERENSIAL HISOBNING ASOSIY TEOREMALARI. ANIQMASLIKLARNI OCHISH.TEYLOR FORMULASI.BA`ZI FUNKSIYALARNI TEYLOR FORMULASI BO`YICHA YOYISH.
4. Koshi teoremasi Teorema (Koshi teoremasi). Agar [a,b] kesmada f(x) va g(x) berilgan bo‘lib,
1) [a,b] da uzluksiz;
2) (a,b) intervalda f’(x) va g‘(x) mavjud, hamda g‘(x)0 bo‘lsa, u holda hech bo‘lmaganda bitta shunday c (a) nuqta topilib,
(1.4)
tenglik o‘rinli bo‘ladi.
Isbot. Ravshanki, (1.4) tenglik ma’noga ega bo‘lishi uchun g(b)g(a) bo‘lishi kerak. Bu esa teoremadagi g‘(x)0, x(a;b) shartdan kelib chiqadi. Haqiqatdan ham, agar g(a)=g(b) bo‘lsa, u holda g(x) funksiya Roll teoremasining barcha shartlarini qanoatlantirib, biror c(a;b) nuqtada g‘(c)=0 bo‘lar edi. Bu esa x(a;b) da g‘(x)0 shartga ziddir. Demak, g(b)g(a). Endi yordamchi
funksiyani tuzaylik.
Shartga ko‘ra f(x) va g(x) funksiyalar [a,b] da uzluksiz va (a,b) intervalda differensiyalanuvchi bo‘lgani uchun F(x) birinchidan [a,b] kesmada uzluksiz funksiyalarning chiziqli kombinatsiyasi sifatida uzluksiz, ikkinchidan (a,b) intervalda
hosilaga ega.
So‘ngra F(x) funksiyaning x=a va x=b nuqtalardagi qiymatlarini hisoblaymiz: F(a)F(b)0. Demak, F(x) funksiya [a,b] kesmada Roll teoremasiinng barcha shartlarini qanoailantiradi. Shuning uchun hech bo‘lmaganda bitta shunday c (a) nuqta topiladiki, F’(c)0 bo‘ladi.
Shunday qilib,
va bundan (1.4) tenglikning o‘rinli ekani kelib chiqadi. Isbot tugadi.
Isbotlangan (1.4) tenglik Koshi formulasi deb ham ataladi.
Endi Koshi teoremasining geometrik ma’nosini aniqlaymiz. Aytaylik x=(t), y=f(t), atb tekislikdagi chiziqning parametrik tenglamasi bo‘lsin. Shuningdek chiziqda t=a ga mos keluvchi nuqtani A((a),f(a)), t=b ga mos keluvchi nuqtani B((b),f(b)) kabi belgilaylik. (22-rasm).
U holda (1.4) formulaning chap qismi AB vatarning burchak koeffitsientini, o‘ng tomoni esa egri chiziqqa parametrning t=c qiymatiga mos keladigan nuqtasida 22-rasm
o‘tkazilgan urinmaning burchak koeffitsientini anglatadi. Demak, Koshi formulasi AB yoyning AB vatarga parallel bo‘lgan urinmasining mavjudligini ta’kidlaydi ekan.
Misol. Ushbu f(x)=x2 va (x)= funksiyalar uchun [0,4] kesmada Koshi formulasini yozing va s ni toping.
Yechish. berilgan funksiyalarning kesma uchlaridagi qiymatlari va hosilalarini topamiz: f(0)=0, f(4)=16, (0)=0, (4)=2; f’(x)=2x, ’(x)= . Bulardan foydalanib Koshi formulasini yozamiz:
, bundan 4s =8 yoki s =2. Demak s= .