Ekstremum mavjud bo`lishining yetarli shartlari.
Quyida keltriladigan ikki teorima yetarli shartlarni beradi. Ba`zi hollarda bu teorimalar ekstremum izlashning birinchi, ikkinchi qoidalari deb ham aytiladi.
1-teorema(birinchi qoida). Agar ƒ(x) funksiya nuqtada uzluksiz bo`lib,
1) ( intervalda intervalda esa ƒ(x)>0 bo`lsa, u holda ƒ(x) funksiya nuqtada minimumga ega bo`ladi;
2) intervalda ƒ(x )>0 va ( intervalda esa ƒ`(x)<0 bo`lsa, u holda ƒ(x) funksiya nuqtada minimumga ega bo`ladi.
y
x
x0
x0
a-chizma
Bu teorimaga ko`ra agar nuqtada ƒ`(x) hosila o`z ishorasini minusdan plyusga o`zgartirsa, u holda minimum nuqtasi bo`ladi(a, b, v-chizma), aksincha, agar ƒ`(x) hosila ishorasini plyusdan minusga o`zgartirsa, maksimum nuqtasi bo`ladi.
y
y
x0
x0
x
x
b –chizma v-chizma
y
Birinchi qoidani isbot etishdan avval bir necha misollar ko`ramiz:
x/
x
a-chizma
x
x0
b-chizma
1. funksiyaning ekstremumlarini toping.
Yechish. hosila mavjud, 2x=0 dan stasionar nuqta x=0 ekani kelib chiqadi. Endi funksiyaning x=0 dan chapda va o`ngda ishorasini tekshiramiz. Buning uchun ixtiyoriy, ammo yetarli kichik musbat h sonini olamiz. So`ngra va miqdorlarni hisoblab, ishorasini aniqlaymiz. Bizning misol uchun . Shunday qilib, ƒ`(-h)=2*(-h)=-2h<0, (h>0-tanlanish bo`yicha) ƒ`(h)=2*(+h)=2h>0.
y
x0
0
x
Ko`rinadiki, =0 nuqtada ƒ`(x) hosila ishorasini minusdan plyusga o`zgartiryapdi. Demak, 1-teorema bo`yicha nuqta minimum nuqtasidir. funksiyaning minimumini topib qo`yamiz;
Demak,
Mashqlar. Ushbu funksiyalarning ekstremumlarini toping.
1. y= 5. y=
2. y= 6. y=
3. y=
4. y= 7. y=
Endi 1-teoremani isbotlaymiz. Agar bo`lsa, u holda intervalining dan farqli barcha nuqtalar uchun ushbu
Lagranj formulasini yozish mumkin, unda yo yoki . Teoremaning 1- holi uchun ekanini ko`rsatamiz. Haqiqatan ham, agar (ya`ni bo`lsa, teoremaning shartiga ko`ra va bo`ladi. Demak, bo`ladi, ya`ni yoki Agar (ya`ni ) bo`lsa, u holda va teoremaning shartiga ko`ra Shuning uchun va yana tengsizlik kelib chiqadi. Demak, (a, b) intervalning dan farqli ixtiyoriy x nuqtalari uchun munosabat o`rinli ekan. Bu esa nuqtada f(x) funksiya minimumga egaligidan darak beradi.
0>
Dostları ilə paylaş: |