Ekstremumlar nazariyasining geometriya,mexanika va fizika masalalariga tadbiqlari


Ekstremum mavjud bo`lishining yetarli shartlari



Yüklə 17,78 Kb.
səhifə3/4
tarix20.11.2023
ölçüsü17,78 Kb.
#163717
1   2   3   4
Ekstremumlar nazariyasining geometriya,mexanika va fizika masala-fayllar.org

Ekstremum mavjud bo`lishining yetarli shartlari.
Quyida keltriladigan ikki teorima yetarli shartlarni beradi. Ba`zi hollarda bu teorimalar ekstremum izlashning birinchi, ikkinchi qoidalari deb ham aytiladi.

1-teorema(birinchi qoida). Agar ƒ(x) funksiya nuqtada uzluksiz bo`lib,
1) ( intervalda intervalda esa ƒ(x)>0 bo`lsa, u holda ƒ(x) funksiya nuqtada minimumga ega bo`ladi;
2) intervalda ƒ(x )>0 va ( intervalda esa ƒ`(x)<0 bo`lsa, u holda ƒ(x) funksiya nuqtada minimumga ega bo`ladi.





y








x





x0



x0

0



a-chizma
Bu teorimaga ko`ra agar nuqtada ƒ`(x) hosila o`z ishorasini minusdan plyusga o`zgartirsa, u holda minimum nuqtasi bo`ladi(a, b, v-chizma), aksincha, agar ƒ`(x) hosila ishorasini plyusdan minusga o`zgartirsa, maksimum nuqtasi bo`ladi.




y



y









x0



x0



x



x

0

0



b –chizma v-chizma



y



Birinchi qoidani isbot etishdan avval bir necha misollar ko`ramiz:






x/

0








x



a-chizma

y





x








x0

0



b-chizma
1. funksiyaning ekstremumlarini toping.


Yechish. hosila mavjud, 2x=0 dan stasionar nuqta x=0 ekani kelib chiqadi. Endi funksiyaning x=0 dan chapda va o`ngda ishorasini tekshiramiz. Buning uchun ixtiyoriy, ammo yetarli kichik musbat h sonini olamiz. So`ngra va miqdorlarni hisoblab, ishorasini aniqlaymiz. Bizning misol uchun . Shunday qilib, ƒ`(-h)=2*(-h)=-2h<0, (h>0-tanlanish bo`yicha) ƒ`(h)=2*(+h)=2h>0.



y








x0








0



x


Ko`rinadiki, =0 nuqtada ƒ`(x) hosila ishorasini minusdan plyusga o`zgartiryapdi. Demak, 1-teorema bo`yicha nuqta minimum nuqtasidir. funksiyaning minimumini topib qo`yamiz;

Demak,
Mashqlar. Ushbu funksiyalarning ekstremumlarini toping.


1. y= 5. y=
2. y= 6. y=
3. y=
4. y= 7. y=
Endi 1-teoremani isbotlaymiz. Agar bo`lsa, u holda intervalining dan farqli barcha nuqtalar uchun ushbu

Lagranj formulasini yozish mumkin, unda yo yoki . Teoremaning 1- holi uchun ekanini ko`rsatamiz. Haqiqatan ham, agar (ya`ni bo`lsa, teoremaning shartiga ko`ra va bo`ladi. Demak, bo`ladi, ya`ni yoki Agar (ya`ni ) bo`lsa, u holda va teoremaning shartiga ko`ra Shuning uchun va yana tengsizlik kelib chiqadi. Demak, (a, b) intervalning dan farqli ixtiyoriy x nuqtalari uchun munosabat o`rinli ekan. Bu esa nuqtada f(x) funksiya minimumga egaligidan darak beradi.



Yüklə 17,78 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin