Electronic connections that link related pieces of information in order to allow a user easy access to them



Yüklə 151,5 Kb.
səhifə3/4
tarix27.05.2022
ölçüsü151,5 Kb.
#59815
1   2   3   4
World Wide Web

Calculus and analysis
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.
It has two major branches, differential calculus and integral calculus; differential calculus concerns instantaneous rates of change, and the slopes of curves, while integral calculus concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus, and they make use of the fundamental notions of convergence of infinite sequences and infinite series to a well-defined limit.
Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Later work, including codifying the idea of limits, put these developments on a more solid conceptual footing. Today, calculus has widespread uses in science, engineering, and economics.
In mathematics education, calculus denotes courses of elementary mathematical analysis, which are mainly devoted to the study of functions and limits. The word calculus is Latin for "small pebble" (the diminutive of calx, meaning "stone"). Because such pebbles were used for counting out distances, tallying votes, and doing abacus arithmetic, the word came to mean a method of computation. In this sense, it was used in English at least as early as 1672, several years prior to the publications of Leibniz and Newton. (The older meaning still persists in medicine.) In addition to the differential calculus and integral calculus, the term is also used for naming specific methods of calculation and related theories, such as propositional calculus, Ricci calculus, calculus of variations, lambda calculus, and process calculus.
Foundations
In calculus, foundations refers to the rigorous development of the subject from axioms and definitions. In early calculus the use of infinitesimal quantities was thought unrigorous, and was fiercely criticized by a number of authors, most notably Michel Rolle and Bishop Berkeley. Berkeley famously described infinitesimals as the ghosts of departed quantities in his book The Analyst in 1734. Working out a rigorous foundation for calculus occupied mathematicians for much of the century following Newton and Leibniz, and is still to some extent an active area of research today.
Several mathematicians, including Maclaurin, tried to prove the soundness of using infinitesimals, but it would not be until 150 years later when, due to the work of Cauchy and Weierstrass, a way was finally found to avoid mere "notions" of infinitely small quantities. The foundations of differential and integral calculus had been laid. In Cauchy's Cours d'Analyse, we find a broad range of foundational approaches, including a definition of continuity in terms of infinitesimals, and a (somewhat imprecise) prototype of an (ε, δ)-definition of limit in the definition of differentiation. In his work Weierstrass formalized the concept of limit and eliminated infinitesimals (although his definition can actually validate nilsquare infinitesimals). Following the work of Weierstrass, it eventually became common to base calculus on limits instead of infinitesimal quantities, though the subject is still occasionally called "infinitesimal calculus". Bernhard Riemann used these ideas to give a precise definition of the integral. It was also during this period that the ideas of calculus were generalized to the complex plane with the development of complex analysis.
In modern mathematics, the foundations of calculus are included in the field of real analysis, which contains full definitions and proofs of the theorems of calculus. The reach of calculus has also been greatly extended. Henri Lebesgue invented measure theory, based on earlier developments by Émile Borel, and used it to define integrals of all but the most pathological functions. Laurent Schwartz introduced distributions, which can be used to take the derivative of any function whatsoever.
Limits are not the only rigorous approach to the foundation of calculus. Another way is to use Abraham Robinson's non-standard analysis. Robinson's approach, developed in the 1960s, uses technical machinery from mathematical logic to augment the real number system with infinitesimal and infinite numbers, as in the original Newton-Leibniz conception. The resulting numbers are called hyperreal numbers, and they can be used to give a Leibniz-like development of the usual rules of calculus.[41] There is also smooth infinitesimal analysis, which differs from non-standard analysis in that it mandates neglecting higher-power infinitesimals during derivations.

Yüklə 151,5 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin