Eng kichik kvadratlar usuli yordamida regressiya
Kirish:
Regression tahlil - bu qaram o'zgaruvchi va bir yoki bir nechta mustaqil o'zgaruvchilar o'rtasidagi
munosabatlarni tekshirish uchun ishlatiladigan kuchli statistik usul. Eng kichik kvadratlar usuli
regressiya modelining parametrlarini baholashda keng qo'llaniladigan yondashuvdir. Kuzatilgan
va bashorat qilingan qiymatlar o'rtasidagi kvadratik farqlar yig'indisini minimallashtirish orqali bu
usul o'zgaruvchilar orasidagi munosabatni ifodalovchi eng mos chiziq yoki egri chiziqni topish
yo'lini beradi.
Savollar:
Eng kichik kvadratlar usuli turli savollarni hal qilishga yordam beradi, jumladan:
1. Tobe o‘zgaruvchi va mustaqil o‘zgaruvchi(lar) o‘rtasidagi bog‘liqlik qanday xususiyatga ega?
2. Bog'liq o'zgaruvchini to'g'ri bashorat qilish uchun regressiya modelining parametrlarini qanday
baholashimiz mumkin?
3. Har bir mustaqil o‘zgaruvchining bog‘liq o‘zgaruvchiga qo‘shgan hissasining ahamiyatini
qanday aniqlash mumkin?
4. Qanday qilib chetlab o'tilganlarni ko'rib chiqishimiz va regressiya modelining umumiy mosligini
baholashimiz mumkin?
Talablar:
Regressiya tahlilida eng kichik kvadratlar usulidan foydalanish uchun quyidagi talablarga rioya
qilish kerak:
1. Ma'lumotlarni yig'ish: Bog'liq o'zgaruvchi va bir yoki bir nechta mustaqil o'zgaruvchilar
kuzatuvlarini o'z ichiga olgan ma'lumotlar to'plamini to'plang. Ma'lumotlar tekshirilayotgan
munosabatlarning vakili bo'lishi kerak.
2. Chiziqlilik farazi: Bog‘liq o‘zgaruvchi va mustaqil o‘zgaruvchi(lar) o‘rtasidagi bog‘lanish chiziqli
funksiya orqali yaqinlashib kelishiga ishonch hosil qiling. Agar munosabatlar chiziqli bo'lmasa,
tegishli transformatsiyalar yoki muqobil regressiya usullari kerak bo'lishi mumkin.
3. Mustaqillik farazi: Maʼlumotlar toʻplamidagi kuzatishlar bir-biridan mustaqil ekanligini
tekshiring. Avtokorrelyatsiya, bunda qaram o'zgaruvchining qiymatlari oldingi qiymatlar bilan
korrelyatsiya qilinadi, bu taxminni buzishi va qo'shimcha mulohazalarni talab qilishi mumkin.
Ko'rsatmalar:
Eng kichik kvadratlar usuli yordamida regressiyani amalga oshirish uchun quyidagi amallarni
bajaring:
1. Regressiya modelini tuzing: Tobe o‘zgaruvchi va mustaqil o‘zgaruvchi(lar) o‘rtasidagi
bog‘liqlikning funksional shaklini aniqlang. Oddiy chiziqli regressiya uchun model odatda Y = b₀
+ b₁X₁ + e ko‘rinishida ifodalanadi, bu yerda Y – bog‘liq o‘zgaruvchi, X₁ – mustaqil o‘zgaruvchi,
b₀ – kesma, b₁ – qiyalik va e – xato atamasini ifodalaydi.
2. Bashorat qilingan qiymatlarni hisoblang: eng kichik kvadratlar usuli orqali olingan taxminiy
koeffitsientlar yordamida bog'liq o'zgaruvchining taxmin qilingan qiymatlarini hisoblang. Har bir
kuzatish uchun tegishli mustaqil o'zgaruvchi(lar)ni regressiya tenglamasiga almashtiring.
3. Qoldiqlarni hisoblang: bog'liq o'zgaruvchining kuzatilgan qiymatlaridan bashorat qilingan
qiymatlarni ayirish orqali qoldiqlarni aniqlang. Qoldiqlar ma'lumotlarning tushunarsiz o'zgarishini
ifodalaydi.
4. Kvadrat qoldiqlar yig'indisini minimallashtiring: har bir qoldiqni kvadratga aylantiring va
kvadrat qiymatlarni yig'ing. Maqsad regressiya koeffitsientlarini o'zgartirish orqali ushbu
summani minimallashtirishdir.
5. Koeffitsientlarni taxmin qiling: Kvadrat qoldiqlar yig'indisini minimallashtiradigan
koeffitsientlarni baholash uchun matritsa algebrasi yoki optimallashtirish algoritmlari kabi
matematik usullardan foydalaning. Ushbu hisob-kitoblar regressiya modeli uchun eng mos
parametrlarni ifodalaydi.
Taqdim etish talablari:
Eng kichik kvadratlar usuli yordamida regressiya tahlilini topshirish uchun quyidagilarga ishonch
hosil qiling:
1. Tadqiqot savoli yoki tahlil maqsadini aniq aytib bering.
2. Foydalanilgan maʼlumotlar toʻplamini, jumladan, qaram oʻzgaruvchi va mustaqil
oʻzgaruvchi(lar)ni taqdim eting.
3. Eng kichik kvadratlar usulini qo'llash va regressiya koeffitsientlarini baholash bo'yicha
bajarilgan qadamlarni tavsiflang.
4. Hisoblangan regressiya tenglamasini kiriting va hisoblangan koeffitsientlarni izohlang.
5. Modelning moslik darajasi va tahlil davomida kiritilgan har qanday cheklovlar yoki taxminlarni
muhokama qiling.
Baholash mezonlari:
Eng kichik kvadratlar usuli yordamida regressiya tahlili quyidagi mezonlar asosida baholanadi:
1. Usulni to'g'ri qo'llash va natijalarni sharhlash.
2. Regressiya modeli va uning taxminlari haqida ko‘rsatib o‘tilgan tushuncha.
3. Qabul qilingan qadamlarni tushuntirish va xulosalarni taqdim etishda aniqlik va ravshanlik.
4. Modelning mosligini baholash va chet ko'rsatkichlar yoki ta'sirli kuzatishlar bilan mos ravishda
ishlov berish.
5. Tahlilning samarali aloqasi, jumladan, tashkiliylik, aniqlik va izchillik.
Dostları ilə paylaş: |