Keywords:
Fourier series, Fourier coefficients. Fourier series expansion of
functions.
1. Furye qatori.
Faraz qilaylik,
( )
f x
funksiya
(
)
,
= − +
R
da berilgan bo‘lsin. Ma’lumki,
shunday
\ 0
T
R
son topilsaki,
x
R
da
(
)
( )
+
=
f x T
f x
tenglik bajarilsa,
( )
f x
davriy funksiya,
0
T
son esa uning davri deyiladi.
Agar
0
T
son
( )
f x
funksiyaning davri bo‘lsa, u holda
kT
(
)
1, 2,
=
k
sonlar ham shu funksiyaning davri bo‘ladi.
Agar
( )
f x
va
( )
g x
davriy funksiyalar bo‘lib,
0
T
ularning davri bo‘lsa,
( )
( )
( ) ( )
( )
( )
( )
(
)
,
,
0
f x
f x
g x
f x
g x
g x
g x
funksiyalar ham davriy bo‘lib, ularning davri
T
ga teng bo‘ladi.
sin ,
cos
y
x y
x
=
=
funksiyalar
2
=
T
davrli funksiya bo‘lgan holda ushbu
( )
cos
sin
=
+
x
a
x b
x
(
, ,
−
a b
o‘zgarmas,
0
)
funksiya ham davriy funksiya bo‘lib, uning davri
2
=
T
bo‘ladi. Haqiqatan
ham,
(
)
(
)
( )
2
2
2
cos
sin
cos
2
sin
2
cos
sin
x
a
x
b
x
a
x
b
x
a
x b
x
x
+
=
+
+
+
=
=
+
+
+
=
+
=
bo‘ladi.
Bu
( )
cos
sin
=
+
x
a
x b
x
sodda davriy funksiya bo‘lib, u garmonika deb
ataladi.
Aytaylik,
( )
f x
funksiya
,
−
da uzluksiz bo‘lsin. Unda
( )
( )
(
)
cos
,
sin
1, 2,3,
f x
nx f x
nx
n
=
funksiyalar ham
,
−
da uzluksiz bo‘lib, ular
,
−
da integrallanuvchi
bo‘ladi. Bu integrallarni quyidagicha belgilaymiz:
"Science and Education" Scientific Journal / Impact Factor 3.848 (SJIF)
January 2023 / Volume 4 Issue 1
www.openscience.uz / ISSN 2181-0842
78
( )
( )
(
)
( )
(
)
0
1
,
1
cos
,
1, 2,
1
sin
.
1, 2,
n
n
a
f x dx
a
f x
nxdx
n
b
f x
nxdx
n
−
−
−
=
=
=
=
=
(1)
Bu sonlardan foydalanib, ushbu
(
)
0
1
cos
sin
2
=
+
+
n
n
n
a
a
nx b
nx
(2)
qatorni ( uni trigonometrik qator deyiladi) hosil qilamiz.
(2) qator funksional qator bo‘lib, uning har bir hadi garmonikadan iborat.
Ta’rif.
(2) funksional qator
( )
f x
funksiyaning Furye qatori deyiladi. (1)
munosabatlar bilan aniqlangan
0
1
1
2
2
,
, ,
,
,
,
,
,
n
n
a a b a b
a b
sonlar Furye koeffitsiyentlari deyiladi.
7.2. Funksiyalarni Furye qatoriga yoyish.
Demak, berilgan
( )
f x
funksiyaning Furye koeffitsiyentlari shu funksiyaga
bog‘liq bo‘lib, (2) formulalar yordamida aniqlanadi, qator esa quyidagicha:
( )
(
)
0
1
~
cos
sin
2
=
+
+
n
n
n
a
f x
a
nx b
nx
.
belgilanadi.
1-misol.
Ushbu
( )
(
)
,
0
x
f x
e
x
=
−
funksiyaning Furye qatori topilsin.
(1) formulalardan foydalanib, berilgan funksiyaning Furye koeffitsiyentlarini
hisoblaymiz:
(
)
( )
(
)
( )
(
)
0
2
2
2
2
2
2
1
2
2
1
1
2
,
1
1
cos
sin
cos
1
2
1
1, 2 ,
,
1
1
sin
cos
sin
1
2
1
1, 2 ,
.
x
x
x
n
n
x
x
n
n
a
e dx
e
e
sh
nx
n
nx
a
e
nxdx
e
n
sh
n
n
nx n
nx
b
e
nxdx
e
n
n
sh
n
n
−
−
−
−
−
−
−
=
=
−
=
+
=
=
=
+
= −
=
+
−
=
=
=
+
= −
=
+
Demak,
( )
=
x
f x
e
funksiyaning Furye qatori
"Science and Education" Scientific Journal / Impact Factor 3.848 (SJIF)
January 2023 / Volume 4 Issue 1
www.openscience.uz / ISSN 2181-0842
79
( )
(
)
( ) (
)
0
1
2
2
1
~
cos
sin
2
1
2
1
cos
sin
2
=
=
=
+
+
=
−
=
+
−
+
x
n
n
n
n
n
a
f x
e
a
nx b
nx
sh
nx n
nx
n
bo‘ladi.
Aytaylik,
( )
f x
funksiya
,
−
da berilgan juft funksiya bo‘lsin:
( )
( )
− =
f
x
f x
.
U holda
( )
cos
f x
nx
juft,
( )
sin
f x
nx
toq
(
)
1, 2,3,...
=
n
funksiya bo‘ladi.
(1) formulalardan foydalanib,
( )
f x
funksiyaning Furye koeffitsiyentlarini
topamiz:
( )
( )
( )
( )
( )
( )
(
)
0
0
0
0
0
1
1
cos
cos
cos
1
cos
cos
2
cos
0,1, 2,
.
n
a
f x
nxdx
f x
nxdx
f x
nxdx
f x
nxdx
f x
nxdx
f x
nxdx
n
−
−
=
=
+
=
=
+
=
=
( )
( )
( )
( )
( )
(
)
0
0
0
0
1
1
sin
sin
sin
1
sin
sin
0
1, 2,
.
−
−
=
=
+
=
=
−
+
=
=
n
b
f x
nxdx
f x
nxdx
f x
nxdx
f x
nxdx
f x
nxdx
n
Demak, juft
( )
f x
funksiyaning Furye koeffitsiyentlari
( )
(
)
(
)
0
2
cos
0,1, 2,
0
1, 2,
n
n
a
f x
nxdx
n
b
n
=
=
=
=
bo‘lib, Furye qatori
( )
0
1
~
cos
2
=
+
n
n
a
f x
a
nx
bo‘ladi.
Aytaylik,
( )
f x
funksiya
,
−
da berilgan toq funksiya bo‘lsin:
( )
( )
− = −
f
x
f x
. U holda
( )
cos
f x
nx
toq,
( )
sin
f x
nx
juft
(
)
1, 2,3,...
=
n
funksiya bo‘ladi.
(1) formulalardan foydalanib,
( )
f x
funksiyaning Furye koeffitsiyentlarini
topamiz:
"Science and Education" Scientific Journal / Impact Factor 3.848 (SJIF)
January 2023 / Volume 4 Issue 1
www.openscience.uz / ISSN 2181-0842
80
( )
( )
( )
( )
( )
(
)
0
0
0
1
1
cos
cos
cos
1
cos
cos
0
0,1, 2,
,
−
−
=
=
+
=
=
−
+
=
=
n
a
f x
nxdx
f x
nxdx
f x
nxdx
f x
nxdx
f x
nxdx
n
( )
( )
( )
( )
(
)
0
0
0
1
1
sin
sin
sin
2
sin
1, 2,
.
−
−
=
=
+
=
=
=
n
b
f x
nxdx
f x
nxdx
f x
nxdx
f x
nxdx
n
Demak, toq
( )
f x
funksiyaning Furye koeffitsiyentlari
(
)
( )
(
)
0
0,
0,1, 2,
,
2
sin
,
1, 2,
n
n
a
n
b
f x
nxdx
n
=
=
=
=
bo‘lib, Furye qatori
( )
1
~
sin
=
n
n
f x
b
nx
bo‘ladi.
2-misol.
Ushbu
( )
(
)
2
f x
x
x
=
−
juft funksiyaning Furye qatori topilsin.
Avvalo berilgan funksiyaning Furye koeffitsiyentlarini topamiz:
( )
(
)
2
2
0
0
2
2
0
0
0
2
0
0
2
2
,
3
2
2
sin
4
cos
sin
4
cos
1
4
cos
1
.
1, 2,
n
n
a
x dx
nx
a
x
nxdx
x
x
nxdx
n
n
x
nx
nxdx
n
n
n
n
n
=
=
=
=
−
=
=
−
= −
=
Demak,
( )
2
=
f x
x
funksiyaning Furye qatori
( )
( )
2
2
2
1
cos
~
4
1
3
=
=
+
−
n
n
nx
f x
x
n
bo‘ladi.
3-misol.
Ushbu
( )
(
)
f x
x
x
=
−
toq funksiyaning Furye qatori topilsin.
Berilgan funksiyaning Furye koeffitsiyentlarini hisoblaymiz:
( )
1
0
0
0
2
1
2
2
cos
1
sin
cos
−
−
=
=
−
+
=
n
n
x
nx
b
x
nxdx
nxdx
n
n
n
.
Demak,
( )
=
f x
x
funksiyaning Furye qatori
( )
( )
1
1
2
~
1
sin
−
=
−
n
n
f x
nx
n
bo‘ladi.
"Science and Education" Scientific Journal / Impact Factor 3.848 (SJIF)
January 2023 / Volume 4 Issue 1
www.openscience.uz / ISSN 2181-0842
81
Faraz qilaylik,
( )
f x
funksiya
,
−
p p
(
)
0
p
segmentda uzluksiz bo‘lsin.
Ma’lumki, ushbu
=
t
x
p
almashtirish
,
−
p p
oraliqni
,
−
ga o‘tkazadi, ya’ni
x
o‘zgaruvchi
,
−
p p
da
o‘zgarganda
t
o‘zgaruvchi
,
−
da o‘zgaradi. Endi
( )
( )
.
=
=
p
f x
f
t
t
deymiz. Unda
( )
t
funksiya
,
−
oraliqda berilgan uzluksiz funksiya bo‘ladi.
Bu funksiyaning Furye koeffitsiyentlari
( )
(
)
( )
(
)
1
cos
,
0 ,1, 2 ,
1
sin
1, 2 ,
n
n
a
t
ntdt
n
b
t
ntdt
n
−
−
=
=
=
=
ni topib, Furye qatorini yozamiz:
( )
(
)
0
1
~
cos
sin
2
=
+
+
n
n
n
a
t
a
nt
b
nt
.
Modomiki,
=
t
x
p
ekan, unda
0
1
~
cos
sin
,
2
=
+
+
n
n
n
a
x
a
n
x b
n
x
p
p
p
bo‘lib, uning koeffitsiyentlari
(
)
(
)
1
cos
,
0,1, 2
1
sin
.
1, 2
p
n
p
p
n
p
a
x
n
xdx
n
p
p
p
b
x
n
xdx
n
p
p
p
−
−
=
=
=
=
bo‘ladi. Natijada
,
−
p p
da berilgan
( )
f x
funksiyaning Furye qatorini
quyidagicha
( )
0
1
~
cos
sin
2
=
+
+
n
n
n
a
n x
n x
f x
a
b
p
p
bo‘lishini topamiz, bunda
"Science and Education" Scientific Journal / Impact Factor 3.848 (SJIF)
January 2023 / Volume 4 Issue 1
www.openscience.uz / ISSN 2181-0842
82
( )
(
)
( )
(
)
1
cos
0,1, 2
1
sin
1, 2
p
n
p
p
n
p
n x
a
f x
dx
n
p
p
n
b
f x
xdx
n
p
p
−
−
=
=
=
=
4-misol.
Ushbu
( )
(
)
1
1
x
f x
e
x
=
−
funksiyaning Furye qatori topilsin.
Yuqoridagi
formulalardan
foydalanib,
( )
=
x
f x
e
funksiyaning
Furye
koeffitsiyentilarini topamiz:
(
)
( )
(
)
1
1
1
1
0
2
2
1
1
1
1
1
2
2
2
2
sin
cos
,
cos
1
1
cos
cos
1
1, 2 ,
,
1
1
x
x
x
n
n
n
n x
n x
a
e dx
e e
a
e
n xdx
e
n
e e
e
n
e
n
n
n
n
−
−
−
−
−
−
−
=
= −
=
=
=
+
−
=
−
= −
=
+
+
(
)
1
1
2
2
1
1
1
2
2
sin
cos
cos
1
1
cos
cos
1
−
−
−
−
=
=
=
+
=
+
=
+
x
x
n
n x
n
n x
b
e
n xdx
e
n
en
n
n e
n
n
( )
(
)
( )
(
)
1
1
1
2
2
2
2
1
1
1, 2,
1
1
n
n
n
e e
e
e
n
n
n
−
+
−
−
−
=
− = −
=
+
+
Demak,
( )
(
)
1
1
x
f x
e
x
=
−
funksiyaning Furye qatori
(
)
( )
( )
1
1
1
2
2
2
2
1
1
1
~
cos
sin
2
1
1
+
−
−
=
−
−
−
+ −
+
+
+
n
n
x
n
e e
e
e e
n
n
n x
n
n
bo‘ladi.
Aytaylik,
( )
f x
funksiya
,
a b
da berilgan bo’lsin.
,
a b
segment
k
a
nuqtalar
yordamida bo‘laklarga ajratilgan.
0
(
,
)
=
=
n
a
a a
b
.
Agar har bir
(
)
1
,
+
k
k
a a
(
)
0,1, 2,
,
1
=
−
k
n
da
( )
f x
funksiya differensiallanuvchi
bo‘lib,
=
k
x
a
nuqtalarda chekli o‘ng
(
) (
)
0
0,1, 2,
,
1
k
f
a
k
n
+
=
−
,
va chap
(
) (
)
0
0,1, 2,
,
k
f
a
k
n
−
=
hosilalarga ega bo‘lsa,
( )
f x
funksiya
,
a b
da bo‘lakli-differensiallanuvchi
deyiladi.
Endi Furye qatorining yaqinlashuvchi bo‘lishi haqidagi teoremani isbotsiz
keltiramiz.
"Science and Education" Scientific Journal / Impact Factor 3.848 (SJIF)
January 2023 / Volume 4 Issue 1
www.openscience.uz / ISSN 2181-0842
83
Teorema.
2
davrli
( )
f x
funksiya
,
−
oraliqda bo‘lakli-differensiallanuvchi
bo‘lsa, u holda bu funksiyaning Furye qatori
( )
(
)
0
1
~
cos
sin
2
=
+
+
k
k
k
a
f x
a
kx b
kx
,
−
da yaqinlashuvchi bo‘lib, uning yig‘indisi
(
)
(
)
0
0
2
+ +
−
f x
f x
ga teng bo‘ladi.
5-misol.
Ushbu
( )
(
)
cos
,
f x
ax
x
a
n
Z
=
−
funksiyaning Furye qatori
topilsin va u yaqinlashishga tekshirilsin.
Bu funksiyaning Furye koeffitsiyentlarini topamiz. Qaralayotgan funksiya juft
bo‘lgani uchun
(
)
0
1, 2,3,
n
b
n
=
=
bo‘lib,
(
)
(
)
( )
0
0
2
cos
cos
cos
cos
sin
1
1
1
=
=
−
+
+
=
=
−
+
+
−
n
n
a
ax
nxdx
a
n x
a
n x dx
a
a
n
a
n
bo‘ladi. Demak,
( )
( )
1
sin
1
1
1
~
1
cos
=
+
−
+
+
−
n
n
a
f x
nx
a
a
n
a
n
.
Agar
( )
cos
=
f x
ax
funksiya teoremaning shartlarini bajarishini e’tiborga olsak,
unda
( )
1
sin
1
1
1
cos
1
cos
=
=
+
−
+
+
−
n
n
a
ax
nx
a
a
n
a
n
bo‘lishini topamiz.
Dostları ilə paylaş: |