Grokking Algorithms



Yüklə 348,95 Kb.
Pdf görüntüsü
səhifə24/122
tarix05.12.2023
ölçüsü348,95 Kb.
#173611
1   ...   20   21   22   23   24   25   26   27   ...   122
grokking-algorithms-illustrated-programmers-curious

EXAMPLE CODE LISTING
We didn’t show you the code to sort the music list, but following is 
some code that will do something very similar: sort an array from 
smallest to largest. Let’s write a function to find the smallest element
in an array:
def findSmallest(arr): 
smallest = arr[0] 
Stores the smallest value
smallest_index = 0 
Stores the index of the smallest value
for i in range(1, len(arr)):
if arr[i] < smallest:
smallest = arr[i]
smallest_index = i
return smallest_index
Now you can use this function to write selection sort:
def selectionSort(arr): 
Sorts an array
newArr = []
for i in range(len(arr)):
smallest = findSmallest(arr)
newArr.append(arr.pop(smallest))
return newArr
print selectionSort([5, 3, 6, 2, 10])
Selection sort
Checking fewer elements each time
Maybe you’re wondering: as you go through the operations, the number 
of elements you have to check keeps decreasing. Eventually, you’re down 
to having to check just one element. So how can the run time still be 
O(
n
2
)? That’s a good question, and the answer has to do with constants 
in Big O notation. I’ll get into this more in chapter 4, but here’s the gist.
You’re right that you don’t have to check a list of 
n
elements each time. 
You check 
n
elements, then 
n
– 1, 
n
- 2 … 2, 1. On average, you check a 
list that has 
1
/
2
× 
n
elements. The runtime is O(
n
× 
1
/
2
× 
n
). But constants 
like 
1
/
2
are ignored in Big O notation (again, see chapter 4 for the full 
discussion), so you just write O(
n
× 
n
) or O(
n
2
).

Yüklə 348,95 Kb.

Dostları ilə paylaş:
1   ...   20   21   22   23   24   25   26   27   ...   122




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin