Hosila va diffеrеnsial. Hosila tushunchasiga olib keladigan masalalar Reja



Yüklə 248,06 Kb.
səhifə11/12
tarix20.02.2023
ölçüsü248,06 Kb.
#85045
1   ...   4   5   6   7   8   9   10   11   12
1. Harakatdagi nuqta tezligini topish haqidagi masala

Teorema. Aytaylik f(x) funksiya x0 nuqtaning biror atrofida uzluksiz bo‘lsin. U holda f(x) funksiya x0 nuqtada f’(x0) hosilaga ega bo‘lishi uchun f’(x0+0), f’(x0-0) lar mavjud va f’(x0+0)=f’(x0-0) tenglikning o‘rinli bo‘lishi zarur va yyetarli bo‘ladi.


Cheksiz hosilalar
Ba’zi nuqtalarda limiti + (-) ga teng bo‘lishi mumkin. Bunday hollarda shu nuqtalarda funksiya cheksiz hosilaga ega yoki funksiyaning hosilasi cheksizga teng deyiladi.
Ushbu funksiya uchun y/x nisbatning x0 dagi limitini qaraylik. Funksiyaning 0 nuqtadagi orttirmasini hisoblaymiz: y=f(0)=f(0+x)-f(0)=f(0+x)=f(x)= .
Funksiya orttirmasining argument orttirmasiga nisbati = va bu nisbatning x0 dagi limiti + ga teng.
Demak, funksiya x=0 nuqtada cheksiz hosilaga ega ekan.
Cheksiz hosila uchun ham bir tomonli cheksiz hosila tushunchasini ham qarash mumkin.
Agar y=f(x) funksiya x=x0 nuqtada + (-) hosilaga ega bo‘lsa, u holda
= =+ (-)
munosabatning o‘rinli ekanligini isbotlash mumkin. Bu tasdiqning teskarisi ham o‘rinli ekanligi o‘z-o‘zidan ravshan.
Berilgan x0 nuqtada f’(x0-0)=-, f’(x0+0)=+, (f’(x0-0)=+, f’(x0+0)=-) bo‘lishi ham mumkin. Bunday holda f(x) funksiya x=x0 nuqtada hosilaga (xatto cheksiz hosilaga ham) ega emas deb hisoblanadi.
Misol tariqasida y= funksiyaning x=0 nuqtadagi bir tomonli hosilalarini aniqlaylik. Bu funksiyaning x=0 nuqtadagi orttirmasi y(0)= ga teng va = ekanligini ko‘rish qiyin emas. Shu sababli =+ va =- bo‘ladi. Demak, y’(-0)=-, f’(+0)=+ bo‘lib, funksiya x=0 nuqtada cheksiz hosilaga ega emas.

Yüklə 248,06 Kb.

Dostları ilə paylaş:
1   ...   4   5   6   7   8   9   10   11   12




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin