Improving Student Content Retention using a Classroom Response



Yüklə 329,43 Kb.
Pdf görüntüsü
səhifə1/2
tarix22.03.2023
ölçüsü329,43 Kb.
#89020
  1   2
Clasroom response system



Improving Student Content Retention using a Classroom Response
System
Robert Collier
1
and Jalal Kawash
2
1
Department of Computer Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, Canada
2
Department of Computer Science, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
Keywords:
Classroom Response System, Content Retention, Student Engagement, Computer Literacy.
Abstract:
The most typical uses of a classroom response system are to improve student engagement and to provide op-
portunities for immediate feedback. For our introductory course in computer science we sought to investigate
whether the content and format typically associated with a classroom response system could be adapted from
a feedback tool into an approach for improving content retention. We devised an experiment wherein differ-
ent sections would be presented with complementary sets of questions presented either immediately after the
corresponding material (i.e., for feedback) or at the beginning of the following lecture, with the express pur-
pose of reminding and reinforcing material (i.e., to improve content retention). In every case, the participants
that encountered an item in the following lecture exhibited relatively better performance on the corresponding
items of the final exam. Thus our evidence supports the hypothesis that, with no significant additional invest-
ment of preparation or lecture time (beyond that associated with all classroom response systems), questions
can be presented in such a way as to engage students while simultaneously improving content retention.
1 INTRODUCTION
Classroom response systems (and particularly those
that require only the ubiquitous smart phone with
which to interact) present an excellent opportunity for
instructors to integrate technology into the classroom
in a way that helps facilitate student learning. These
systems, exemplified by the practice of posing a ques-
tion to the class that is answered immediately and
anonymously, are known to improve student engage-
ment. Furthermore, these systems offer an opportu-
nity for both students and instructors to receive cru-
cial and immediate feedback about the effectiveness
of a lecture.
These express purposes notwithstanding, in this
paper we explore the results of an investigation into
whether or not classroom response systems can also
provide an opportunity for improving content reten-
tion through an active (albeit brief) return to previ-
ously discussed content, without sacrificing its use as
a tool for assessment and improving student engage-
ment.
The remainder of this paper is organized as fol-
lows. Section 2 discusses related work in the context
of the use of classroom response systems. The course
in which our experiment takes place is discussed in
Section 3. The experiment design is presented in Sec-
tion 4, and the results are given in sections 5 and 6.
Finally, the paper is concluded in Section 7.
2 CLASSROOM RESPONSE
SYSTEM
The feedback provided by a classroom response sys-
tem can be crucial to both students and instructors. A
question on which a particular student under-performs
(with respect to the other students in the class) can
indicate an area of weakness, and in this way a stu-
dent’s relative performance becomes a discrete oppor-
tunity for that student to self-assess his or her cur-
rent understanding. Furthermore, the immediate and
specific nature of the feedback provided by a class-
room response system can be contrasted against tra-
ditional assessment tools (e.g., quizzes, assignments,
etc.) where several topics are often assessed simul-
taneously and feedback is not immediately available.
Additionally, and perhaps more importantly, the feed-
back provided to instructors allows instructors to ad-
just the pace of the lecture to match the immediate
learning needs of the participating students.
Collier, R. and Kawash, J.
Improving Student Content Retention using a Classroom Response System.
DOI: 10.5220/0006218100170024
In Proceedings of the 9th International Conference on Computer Supported Education (CSEDU 2017) - Volume 1, pages 17-24
ISBN: 978-989-758-239-4
Copyright
© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved
17


Numerous studies ((Boscardin and Penuel, 2012;
Moss and Crowley, 2011; Kay and LeSage, 2009;
Bruff, 2009; Moredich and Moore, 2007)) have re-
ported that the use of classroom response systems in
the classroom can improve student engagement (to
the benefit of student learning) and (as noted previ-
ously) provide an opportunity for both students and
instructors to receive important feedback. Although
virtually all surveyed materials reinforce that students
are satisfied, on more than one occasion ((Blasco-
Arcas et al., 2013; Webb and Carnaghan, 2006)) it
has been noted that the studies that report learning
improvements might be observing an effect associ-
ated with improved interactivity in the classroom, and
cannot conclusively demonstrate that the classroom
response system is actually required to achieve this
effect. This reasonable consideration notwithstand-
ing, the use of classroom response system as a tool to
engage students remains largely undisputed. Class-
room response systems have also been used to suc-
cessfully identify students that are struggling (Liao
et al., 2016), and Porter et al. showed that perfor-
mance in classroom response system early in the term
was a good predictor of students’ outcomes at the end
of the term (Porter et al., 2014).
Unfortunately it must also be acknowledged that
there is evidence that the adoption of a classroom
response system could present a barrier to students
(which could, naturally, negatively interfere with
knowledge retention). Draper and Brown (2004) re-
ported that some students expressed that the system
could actually be a distraction from the learning out-
come. Furthermore the review by Kay and Lesage
(2009) cited works that discussed the potential for in-
class discussions to actually confuse students by ex-
posing students to differing approaches/perspectives.
This is, naturally, a potential pitfall for any activity
that prompts in-class discussion, and given the nu-
merous reports of the potential advantages associated
with classroom response systems, we definitely feel
that there is sufficient evidence to motivate the inves-
tigation of these systems as a tool for improving con-
tent retention.
It should be noted that a number of reviews
(Boscardin and Penuel, 2012; Kay and LeSage, 2009;
Judson and Sawada, 2002) have noted that much of
the research into the benefits and drawbacks associ-
ated with the use of classroom response systems has
been qualitative and/or anecdotal, and that there are
relatively few studies using control groups and quan-
titative analyses. The authors believe this study to be
among the first to offer a quantitative assessment of
the use of classroom responses systems as a tool to
improve content retention (as opposed to a tool ex-
plicitly used for improving engagement or providing
student feedback). It should, however, be specifically
noted that the approach described by Brewer (2004)
in the biology faculty at the University of Montana
noted that although response system questions were
presented to students during the class in which the
materials were presented, correct answers would not
be revealed to the students until the following class.
Although this practice could conceivably improve re-
tention as well, the express purpose of using the re-
sponse system was described in that study to be feed-
back (for both the instructors and students), not an
improvement to retention. Similarly, Caldwell (2007)
does not mention retention specifically but does de-
scribe a ”review at the end of a lecture” - this could
also conceivably improve retention if these questions
pertained to the beginning of a particularly lengthy
lecture.
It should also be emphasized that our paper is con-
cerned only with the potential applications of class-
room response systems to the problem of content re-
tention; although several other studies have looked
at classroom response systems for the retention of
students in computer science programs, this is not
directly related to the problem of content retention.
Porter, Simon, Kinnunen, and Zazkis (2013 & 2010),
for instance, indicated that they used clickers as one
of the best practices for student retention, but it is not
clear how this class response system is used and how
it is affecting content or knowledge retention. Fur-
thermore, unlike Tew and Dorn (2013), we do not aim
to develop general instruments for assessment. Our
approach is ad-hoc with the specific objective of de-
termining if there is measurable evidence that a class
response system can help improve retention of con-
tent and knowledge by students.
A related issue for which there have been sev-
eral studies (albeit with conflicting results) concerns
whether or not the use of classroom response sys-
tems can improve student performances on final ex-
ams. Diana Cukierman suggested that studying the
effect of a classroom response system on outcomes
such as final exam scores may be infeasible (Cukier-
man, 2015) and an experiment by Robert Vinaja that
used recorded lectures, videos, electronic material,
and a classroom response system did not demonstrate
an impact of these practices on grade performance
(Vinaja, 2014). Contrarily, Simon et al. demonstrated
in a CS0 course that peer instructed subjects outper-
formed those who are traditionally instructed (Simon
et al., 2013), and Daniel Zingaro confirmed this find-
ing but in a CS1 context (Zingaro, 2014). Zingaro
et al. went further to show that students who learn
in class retain the learned knowledge better than stu-
CSEDU 2017 - 9th International Conference on Computer Supported Education
18


dents who did not learn in class (Zingaro and Porter,
2015). Steven Huss-Lederman similarly reported on a
2-year experiment in which first year students showed
better learning gains as a result of using a classroom
response system, but there was a drop in these gains in
the second year (Huss-Lederman, 2016). In compari-
son, our work starts from the thesis that classroom re-
sponse system possibly have an effect on knowledge
retention (and, by extension, on final exam scores).
Our aim was to quantify this observation in a first-
year computer science course and in contrast with
the aforementioned studies, the driving question of
our research is when and how classroom response
questions can be effective in improving learning out-
comes. Specifically, we compared two groups which
both used the same classroom response system and
similar question banks - it was the only the order in
which these questions were delivered that differed.
3 COURSE DETAILS AND
OBJECTIVES
The course within which this experiment was con-
ducted was CPSC203, Introduction to Problem Solv-
ing Using Application Software.) This was a first
year computer literacy course at the University of Cal-
gary designed specifically for students not working
towards a major in computer science. Consequently,
this course did not assume students have any founda-
tion of computer science knowledge upon which to
build (although a basic level of familiarity with the
use of a personal computer was assumed). Most of
the students in attendance are undergraduate students
enrolled in a course from the schools of business,
management, and/or social science, but students from
the natural sciences, communications, and other dis-
ciplines also register for this course on a regular basis.
The course is taught in a traditional lecture-style for-
mat, with content delivered over 13 weeks through a
combination of lectures (75 minutes, twice a week)
and tutorials (100 minutes weekly).
As the principle learning outcome for this course
is to impart an introduction to many of the fundamen-
tal areas of the computer science discipline, the course
features a particularly broad range of topics. After the
initial weeks of the course, during which some very
basic introductory materials are presented alongside
a discussion of research design fundamentals, the re-
mainder of the course could be logically divided into
three“modules”. Figure 1 is a diagrammatic represen-
tation of the topics of the course, presented to students
during the first (i.e., introductory) lecture to demon-
strate the interconnectedness and dependencies of the
topics to follow. The arrows indicate topic depen-
dence.
The first of these modules introduces both set the-
ory and graph theory before discussing the applica-
tion of these principles to problem-solving (e.g. traf-
fic light scheduling). During some previous offerings
of this course these topics are followed by several
short introductory computer programming lectures,
but these lectures were not presented as part of the
course offerings discussed in this paper.
The module that follows introduces both proposi-
tional and predicate logic before exploring the funda-
mentals of relational database management systems.
These topics (i.e., classical logic and database man-
agement) are then brought together for the introduc-
tion of structured query language.
The final module provides a brief introduction to
the principles of computer networking and security
(e.g., encryption and authentication with public-key
cryptography. Although these topics are somewhat in-
dependent of the previous materials, they do broaden
the knowledge base to ensure that students are able
to remember, understand, and apply many core com-
puter science topics.
Figure 1: Topics and Dependencies.
Improving Student Content Retention using a Classroom Response System
19


4 EXPERIMENTAL DESIGN
At the time of this investigation, the use of a class-
room response system in CPSC203 has been standard
operating procedure since 2010. Although these sys-
tems are widely recognized to encourage student en-
gagement while allowing instructors to assess the de-
gree to which the current material is being absorbed,
it might be possible to improve the benefit to the stu-
dents by using these systems to revisit and reinforce
content discussed in a prior lecture. Notwithstanding
the fact that it is necessary to ask students about the
content that has been presented over the last few min-
utes to determine if they have absorbed the material
and/or created adequate study notes, asking questions
pertaining to content that is still fresh in the minds of
the students (i.e., in either working or intermediate-
term memory) might do very little to aid students in
storing the material into long-term memory.
The fall semester of 2014 afforded a unique op-
portunity for a controlled experiment on the effec-
tiveness of the Tophat classroom response system for
improving content retention; the two sections were
taught by the same instructor, in (nearly) synchronous
75-minute lectures, with shared assignments, quizzes,
and examinations. The two weekly lectures for each
section were also taught on the same days (Tuesdays
and Thursdays) with the most significant observable
differences (at the time the experiment was designed)
being that one section would receive its lectures start-
ing at 9:30 AM and would contain roughly half as
many students as the other, which would receive its
lectures starting at 12:30 PM. From this point these
two sections will be referred to as the early section
(or the early group) and the late section (or the late
group), respectively.
The performance discrepancy that might be at-
tributed to the differing lecture times notwithstanding,
a Kolmogorov-Smirnov test was used to determine if
there were any statistically significant differences be-
tween the scores on the portion of the final exam per-
taining to this investigation. This nonparametric test,
applied to the final exam scores of the 26 participants
that made up the sample from the early section and
the 46 participants that made up the sample from the
late section, did not indicate a statistically significant
difference in their respective final exam performances
(D-value of 0.1378 and p-value of 0.898).
For this experiment, a collection of 54 questions
was developed for the period of 14 lectures during
which the Tophat classroom response system would
be in use. Additionally, a minor variation on each
of these 54 questions was also developed to ensure
that the late section would never receive an identi-
cal question to one that had already been asked of the
early section. The course was designed such that four
questions would be posed to each section during each
lecture (except during the first lecture, which would
feature only two). The four questions associated with
each lecture would be divided (at random) into com-
plementary sets A and B (of two questions each) - the
early sample would be asked the questions from set A
immediately after the material was presented and the
questions from set B at the beginning of the follow-
ing class, while the late section would be assigned the
reverse.
As a clarifying example, if the four questions as-
sociated with the nth lecture of the course were des-
ignated q1, q2, q3, and q4, the early section could be
asked questions q2 and q3, immediately after the ma-
terial had been presented, and questions q1 and q4 at
the beginning of the n+1
th
lecture. The late section,
on the other hand, would be asked variations on ques-
tions q1 and q4 immediately after the material had
been presented and questions q2 and q3 at the begin-
ning of the n+1
th
lecture.
In this way, both classes answered 27 questions
immediately after the material was presented (allow-
ing for the traditional role of the classroom response
system as an engagement/assessment tool) and 27
questions on the following class (wherein the class-
room response system questions become an opportu-
nity for students to revisit the material that had been
presented during a previous lecture).
5 “MULTIPLE CHOICE” ITEM
RESULTS
For the early group, within which there were 26 par-
ticipants, the average participation level was 73.18%
(standard deviation 27.16; with 0% and 100% indicat-
ing participants that did not answer any of the class
response system questions and answered every ques-
tion, respectively). For the late group, within which
there were 46 participants, the average participation
level was 72.48% (standard deviation 24.85). As
there was a substantial difference between the num-
ber of students in each group and a lack of normality
in the data, the nonparametric Kolmogorov-Smirnov
test was used to determine if there were any statisti-
cally significant differences between the correspond-
ing participation levels. With a calculated D-value
(for the maximum difference between the distribu-
tions) of 0.1288 and a very large p-value of 0.929,
the null hypothesis (that both samples come from a
population with the same distribution) cannot be re-
jected. It is, thus, not unreasonable to conclude that
CSEDU 2017 - 9th International Conference on Computer Supported Education
20


both groups were equally willing to participate (or,
more precisely, the difference in participation levels
was not considered statistically significant).
A simple performance assessment (with respect to
the classroom response system questions only) can
be derived for each participant as the fraction of the
questions answered by the participant that were, in
fact, answered correctly. In the early group the av-
erage performance was 70.66% (standard deviation
13.74) while in the late group the average perfor-
mance was 66.95% (standard deviation 13.54). Once
again the Kolmogorov-Smirnov test was used to de-
termine if there were any statistically significant dif-
ferences (since the data sets were not normally dis-
tributed) but with a D-value of 0.2533 and a p-value
of 0.218, the null hypothesis that both samples came
from the same distribution cannot be rejected. It is
not unreasonable to interpret, from this, that neither
of the participant groups was able to outperform the
other. This is a welcome result considering that both
groups received exactly the same number of questions
for both the engagement and retention questions.
Having established that it would not be unreason-
able to compare each of the groups on specific ques-
tions (to assess the degree to which specific ques-
tions can improve retention), four of the twenty mul-
tiple choice questions and one of the eight short an-
swer questions from the final exams were designed
such that they would both reflect and resemble class-
room response system questions encountered by the
class. Although this is unarguably a rather small sam-
ple from which to draw conclusions, it is important
to recognize that the typical classroom response sys-
tem question (i.e., designed to improve student en-
gagement and provide an opportunity for feedback)
is not necessarily a suitable question for a summative
assessment tool like a final exam.
It should be noted that virtually all of the ma-
terial from the final exam was accompanied by at
least one related classroom response system question
(with the exception of one multiple choice question
and one short answer question that addressed mate-
rial covered in the first three weeks, before the class-
room response system came into use). Nevertheless
it must also be noted that most of the corresponding
final exam questions did not resemble their classroom
response system counterparts. Consequently the au-
thors feel that the most generalizable conclusions will
be drawn from the observed performance differences
(between students that encountered the corresponding
classroom response question during the same lecture
as the material vs. the following lecture) for those
exam questions where the parallels to the correspond-
ing classroom response questions were undeniable.
Two of the four multiple choice final exam ques-
tions pertained directly to structured query language
(SQL). The former (denoted MCQ1) requested that
the students select the correct “where” clause to
produce a specific result, while the latter (denoted
MCQ2) presented a SQL query and requested the
students provide the number of rows that would be
returned. Of the group of students that encoun-
tered MCQ1 during the same lecture as the corre-
sponding material (i.e., the lecture on the construc-
tion of “Where” clauses), 38.5% answered the class-
room response system question correctly and 57.7%
answered the corresponding final exam question cor-
rectly. If this is contrasted against the group of stu-
dents that encountered MCQ1 during the following
lecture (i.e., at least 48 hours later), only 32.6% an-
swered the classroom response system question cor-
rectly but 60.9% answered the final exam question
correctly. A simple summary of these results would
observe that the group of students that received the
classroom response system question in the following
lecture did “better” on the final exam question, even
though their performance on the classroom response
question was worse than the other group. This result
is depicted in Figure 2.
Figure 2: Performance on an application level question.
Of the group of students that encountered MCQ2
during the same lecture as the corresponding material
(i.e., the lecture on Cartesian products and join oper-
ations), 58.7% answered the classroom response sys-
tem question correctly and 41.3% answered the corre-
sponding final exam question correctly. Of the other
group, on the other hand, 69.2% answered the class-
room response system question correctly and 61.5%
answered the final exam question correctly. As with
MCQ1, the students that received the classroom re-
sponse system question in the following lecture did
“better” on the final exam. It may, however, be worth
noting that this same group performed “better” on the
classroom response system question as well. This re-
sult is depicted in Figure 3.
Improving Student Content Retention using a Classroom Response System
21


Figure 3: Performance on an application level question.
The other two of the four multiple choice final
exam questions considered for this investigation per-
tained to networking. Using the terminology from
the cognitive domain of Bloom’s taxonomy (Bloom,
1956), where the structured query language questions
discussed previously could be said to assess at the ap-
plication level, these networking questions would be
best categorized as assessment tools for the knowl-
edge and comprehension levels (respectively). The
former (denoted MCQ3) pertained to the differences
between user datagram protocol (UDP) and trans-
mission control protocol (TCP) and the latter (de-
noted MCQ4) pertained to the POST and GET oper-
ations of the hypertext transfer protocol (HTTP). Of
the group of students that encountered MCQ3 dur-
ing the same lecture as the corresponding material,
53.8% answered the classroom response system ques-
tion correctly and 84.6% answered the correspond-
ing final exam question correctly. For the sample
that encountered the classroom response question dur-
ing the following lecture, 26.1% answered the class-
room response system question correctly and 93.5%
answered the corresponding final exam question cor-
rectly. In spite of the very significant difference in
performance on the classroom response question it-
self (with only 26.1% of the late sample answered the
classroom response question correctly), once again
the final exam question results indicate that the group
of students that received the classroom response sys-
tem question in the following lecture did “better” on
the final exam. This result is depicted in Figure 4.
Of the group of students that encountered MCQ4
during the same lecture as the corresponding material,
53.8% answered the classroom response system ques-
tion correctly and 88.5% answered the corresponding
final exam question correctly. When this is contrasted
against the results from the late group, the familiar
pattern was evident; 37.0% of the late group answered
the classroom response question correctly but 91.3%
answered the final exam question correctly. This re-
sult is depicted in Figure 5.
Figure 4: Performance on an application level question.
Figure 5: Performance on an application level question.
It is worthy to note at this point that these re-
sults are very intuitive; a classroom response question
posed to the class at the beginning of the lecture, but
pertaining to content from a previous lecture, is not
being used to provide feedback about the immediate
learning needs of the classroom. It does, however,
stand to reason that such a question is an opportunity
to reinforce (and bridge the current lecture with) con-
tent from a previous lecture, thereby improving stu-
dent retention. This would, naturally, be evidenced
by a relative performance improvement on the corre-
sponding questions of the final exam
6 “SHORT ANSWER” ITEM
RESULTS
The final question posed to the students on the final
exam that corresponded directly to a classroom re-
sponse question previously encountered by the stu-
dents used the short answer format (i.e., it was neither
a multiple-choice question nor was it any other format
where prompts or possible answers were provided to
the student). This question entailed the creation of a
graph that, when subjected to a graph colouring al-
gorithm (n.b., one of the earlier topics on the course)
CSEDU 2017 - 9th International Conference on Computer Supported Education
22


requires the same number of colours as the number of
vertices in the graph. Consequently it could be argued
that according to the terminology from the cognitive
domain of Bloom’s taxonomy this question was a syn-
thesis level question.
Figure 6: Performance on a synthesis level question.
Both the early and late participate samples (i.e.,
those that encountered the classroom response ques-
tion immediately after the material was presented in
lecture or at the beginning of the following lecture, re-
spectively) achieved the same performance level (i.e.,
50%) on the classroom response question. Neverthe-
less, the results of the experimental analysis indicated
that the average mark achieved (on the corresponding
short answer question of the final exam) by the late
sample was greater than the average mark achieved
by the early sample (78.0% and 73.3%, respectively).
Although this is consistent with the previous results,
the conclusion must be tempered by the fact that this
difference was not found to be statistically significant
(according to an unpaired student t-test). The distri-
butions of students (from the early and late samples)
that achieved full marks, partial marks, or no marks
on the corresponding final exam question is depicted
in Figure 6.
7 CONCLUSIONS
As any educator that has employed a classroom re-
sponse system can attest, the creation of suitable items
is a considerable investment of time - both the time
required to develop a suitable item and the time con-
sumed in class to present the item, allow the students
to formulate and submit a response, and discuss the
results. That said, there are well-established benefits
to the class if these costs can be incurred, most no-
tably as an approach for improving student engage-
ment and (if the questions are a source of marks
for the student) motivate, and as source of immedi-
ate feedback for both the students and the instruc-
tors. The results of this experiment support the hy-
pothesis that the very same activity can also be used
to improve student retention simply by varying when
these questions are presented to the student. Ques-
tions posed to the students at the beginning of the lec-
ture that follows the lecture where the corresponding
materials were introduced are an opportunity for stu-
dents and instructors to briefly revisit material in a
structured activity, and this, in turn, presents an op-
portunity for students to reinforce knowledge that has
passed into long-term memory. It is also worth not-
ing that although this approach does entailing sacri-
ficing the utility of the classroom response question
as an approach for acquiring immediate feedback, it
does not preclude the other more typical application
of these questions as a way of motivating or engaging
students.
The five items from the final exam (i.e., the four
multiple choice questions and one short answer ques-
tion) used for this experiment were designed such that
they would assess (as much as possible) knowledge at
several different levels of Bloom’s taxonomy while at
the same time having a clear and apparent connection
to a previously encountered item. Every student in at-
tendance of the lecture (regardless of whether or not
they participated in that specific classroom response
activity) would have encountered the question (and
subsequent discussion), with the only difference be-
ing when they encountered it. In all cases, the student
sample that encountered the classroom response item
in the following lecture exhibited better performance
than the student sample that encountered the item im-
mediately after the material had been presented. As
noted previously, this is an intuitive and not particu-
larly surprising result, since the item was obviously
Improving Student Content Retention using a Classroom Response System
23


not being used to generate immediate feedback if it
did not accompany the corresponding lecture content.
Contrarily, these items, though structurally identical
to a traditional classroom response question, were
used to improve retention rather than generate feed-
back. It is encouraging that the use of these retention
questions would appear to be correlated with measur-
able improvements in performance.
It is, however, noteworthy that the results would
also seem to suggest (albeit with less certainty) that
students do not perform as well on these questions
when delivered in the following lecture. This is also a
relatively intuitive result, but the impact was measur-
able and should be considered if classroom response
activities are used in part to determine a student’s fi-
nal grade. This makes intuitive sense since students
may learn more from early mistakes or failure than
they would when they get it right while not fully un-
derstanding it.
REFERENCES
Blasco-Arcas, L., Buil, I., Hernandez-Ortega, B., and Sese,
F. J. (2013). Using clickers in class. the role of in-
teractivity, active collaborative learning and engage-
ment in learning performance. Computers & Educa-
tion, 62:102–110.
Boscardin, C. and Penuel, W. (2012). Exploring benefits of
audience-response systems on learning: a review of
the literature. Academic Psychiatry, 36(5):401–407.
Bruff, D. (2009).
Teaching with Classroom Response
Systems: Creating Active Learning Environments.
Jossey-Bass.
Cukierman, D. (2015). Predicting success in university first
year computing science courses: The role of student

Yüklə 329,43 Kb.

Dostları ilə paylaş:
  1   2




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin