Integrallashning asosiy usullari differensial ostiga kiritish usuli. O‘rniga qo‘yish (o‘zgaruvchini almashtirish) usuli. Bo‘laklab intеgrallash usuli



Yüklə 40,94 Kb.
tarix18.12.2023
ölçüsü40,94 Kb.
#183957
Murodjon Mamatov


INTEGRALLASHNING ASOSIY USULLARI Differensial ostiga kiritish usuli. O‘rniga qo‘yish (o‘zgaruvchini almashtirish) usuli. Bo‘laklab intеgrallash usuli 7.2.1. Aniqmas integralda x o‘zgaruvchidan boshqa u  u(x) o‘zgaruvchiga o‘tish orqali  f (x)dx integralni jadval integraliga keltirib integrallash usuliga differensial ostiga kiritish usuli deyiladi. Bu usulda f (u)du  d ( f (u)) formulaga asoslangan quyidagi almashtirishlar keng qo‘llaniladi: du  d(u  a), ( ), 1 d au b a du   ( ), 2 1 2 udu  d u cosudu  d(sin u), sin udu  d(cosu), (ln ), 1 du d u u  ( ), cos 1 2 du d tgu u  (arcsin ) 1 1 2 du d u u   , ( ) 1 1 2 du d arctgu u   , a,b o‘zgarmas sonlar. 303 1 misol. Integrallarni differensial ostiga kiritish usuli bilan toping: 1)  ; 16 9 2 x dx 2) ; 2 e xdx x 3)  ; 1 2 3 dx x arctg x 4)   . sin cos cos sin dx x x x x 1)             C u arctg u du x d x x dx 4 4 1 3 1 3 4 1 16 (3 ) (3 ) 3 1 16 9 2 2 2 2 . 4 3 12 1 C x arctg  2)         . 2 1 2 1 2 1 ( ) 2 2 1 2 2 2 e xdx e d x e du e C e C x x u u x 3)          . 4 1 4 ( ) 1 4 4 3 3 2 3 C arctg x C u dx arctg xd arctgx u du x arctg x 4)              ln | | ln |sin cos | . sin cos (sin cos ) sin cos cos sin u C x x C u du x x d x x dx x x x x 7.2.2. Aniqmas integralda integral ostidagi funksiyaning bir qismini u  u(x) o‘zgaruvchi bilan almashtirish orqali  f (x)dx integralni integrallash qulay bo‘lgan  f (u)du integralga keltirib integrallash usuliga o‘rniga qo‘yish (yoki o‘zgaruvchini almashtirish) usuli deyiladi. Bu usul   f (x)dx  f ((t))(t)dt (2.1) formulaga asoslanadi. Ayrim hollarda t (x) o‘rniga qo‘yish tanlashga to‘g‘ri keladi. U holda (2.1) formula o‘ngdan chapga qo‘llaniladi, ya’ni    f ((x))(x)dx f (t)dt . 2 misol. Integrallarni o‘rniga qo‘yish usuli bilan toping: 1) x x 3dx;   2) 1 cos sin 2 ; 2   x xdx 3) dx x x x   ln 1 ln ; 4)  . 4 2 2 dx x x 1) x  3  t o‘rniga qo‘yishni bajaramiz. U holda 3, 2 . 2 x  t  dx  tdt Shu sababli  x x  3dx   (t  3) t  2tdt  2 (t  3t )dt  2 4 2 ( 3) 2 ( 3) . 5 2 3 6 5 2 6 2 5 3 5 3 4 2 C x x C t t   t dt   t dt           304 2) 2 2 1 cos x  t deymiz. U holda sin 2 2 , 1 cos . 2 x   tdt t   x Bundan (1 cos ) . 3 2 3 1 cos sin 2 ( 2 ) 2 2 3 3 2 C x C t   x xdx   t  t dt         3) 2 1 ln x  t bo‘lsin. Bundan ln 1, 2 , 2 tdt x dx x  t   t  1 ln x.U holda                                C t t dt t t t t dt t t tdt dx x x x 1 1 ln 2 1 2 1 1 2 1 1 2 1 2 ln 1 ln 2 2 2 2 . 1 ln 1 1 ln 1 2 1 ln ln C x x x         4) x 2sin t, dx 2costdt, 4 x 2cost 2     deymiz. Bunda . 2 arcsin x t  U holda                dt ctgt t C t dt dt t t dt t t dx x x 2 2 2 2 2 2 2 sin sin 1 sin sin 4 cos                             C x x x C x x ctg 2 arcsin 2 sin arcsin 2 1 sin arcsin 2 arcsin 2 arcsin 2 C x x x      2 arcsin 4 2 . Ba’zan bajarilgan o‘rniga qo‘yishdan so‘ng shunday integral hosil bo‘ladiki, bu integralni boshqa o‘rniga qo‘yish orqali soddalashtirish yoki jadval integraliga keltirish lozim bo‘ladi. 3 misol. (8 1) 4 1 2 2 x x dx integralni toping. t x 1  o‘rniga qo‘yishni bajaramiz. U holda 2 t dt dx   va  (8 1) 4 1 2 2 x x dx . (8 ) 4 1 4 1 8 2 2 2 2 2                 t t tdt t t t dt Keyingi integralda 2 2 4  t  z o‘rniga qo‘yishdan foydalanamiz. Bundan , 8 4 2 2 tdt  zdz  t  z  . U holda     2 2 (8 t ) 4 t tdt . 2 2 1 ( 4) 4 2 2 C z arctg z dz z z zdz           305 z ni x orqali ifodalaymiz: . 1 4 1 4 4 2 2 2 x x x z t       Demak,  (8 1) 4 1 2 2 x x dx . 2 4 1 2 1 2 C x x arctg     7.2.3. Aniqmas integralda integral ostidagi ifodani udv ko‘paytma shaklida ifodalash va     udv uv vdu (2.2) formulani qo‘llash orqali  f (x)dx integralni integrallash qulay bo‘lgan  vdu integralga keltirib topish usuliga bo‘laklab integrallash usuli deyiladi. Bo‘laklab integrallash usuli bilan topiladigan integrallarni asosan uch guruhga ajratish mumkin: P x arctgxdx  ( ) , P(x)arcctgxdx,   P(x)ln xdx,  P(x)arcsin xdx ,  P(x) arccos xdx (bu yerda P(x)  ko‘phad) ko‘rinishdagi 1-guruh integrallari. Bunda dv  P(x)dx deb olish va qolgan ko‘paytuvchilarni u orqali belgilash qulay;  P(x)e dx, kx  P(x)sin kxdx,  P(x)cos kxdx ko‘rinishdagi 2-guruh integrallari. Ularni topishda u  P(x) va qolgan ko‘paytuvchilarni dv deb olish maqsadga muvofiq; e sin kxdx, kx  e kxdx kx cos  ko‘rinishdagi 3-guruh integrallari (2.2) formulani takroran qo‘llash orqali topiladi. 4 misol. Integrallarni bo‘laklab integrallash usuli bilan toping: 1)  arctgxdx; 2) xdx  2 ln ; 3) sin 2 ; 2  x xdx 4) e cos xdx. x   1)  arctgxdx integral 1- guruhga kiradi. U holda             dx x x xarctgx dx dv v x x dx arctgx u du arctgxdx 2 2 1 , , 1 , ln1 . 2 1 1 (1 ) 2 1 2 2 2 dx xarctgx x C x d x xarctgx          306 2) 1- guruh xdx  2 ln integraliga (2.2) formulani ketme-ket ikki marta qo’llaymiz:            x x xdx dx dv v x x dx x u du x xdx ln 2 ln , ln , 2ln , ln 2 2 2 ln 2 ln 2 ln 2 ln 2 . , ln , , 2 2 x x x x dx x x x x x C dx dv v x x dx x u du              3)  x sin 2xdx 2 integral 1- guruhga kiradi. U holda             x x x x xdx xdx dv v x u du xdx x xdx cos2 cos2 2 1 2 cos2 sin 2 , , 2 , sin 2 2 2 2            x x x x x xdx xdx dv v x u du dx sin 2 2 1 sin 2 2 1 cos2 2 1 2 sin 2 cos2 , , , 2 cos2 . 4 1 sin 2 2 1 cos2 2 1 2   x x  x x  x  C 4)  e xdx x   cos integral uchinchi guruh integrali bo’lgani sababli (2.2) formulani takroran qo‘llaymiz:                 x xdx dv v e u du e dx I e xdx x x x sin cos , , , cos e x   e xdx  x x        sin sin 1             x xdx dv v e u du e dx x x cos sin , ,         e x   e x   e x x x x             cos cos 1 sin 1 I x x e x 2 2 2 sin cos           Bundan . sin cos 2 2 C x x I e x            307 Ko‘rsatilgan uch guruh bo‘laklab integrallanadigan barcha integrallarni o‘z ichiga olmaydi. Masalan,  x xdx 2 sin integral yuqorida keltirilgan integral guruhlariga kirmaydi, lekin uni bo‘laklab integrallash usuli bilan topish mumkin:                ln |sin | . , sin , sin 2 2 xctgx ctgxdx xctgx x C
Yüklə 40,94 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin