Issn 0564-3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 1



Yüklə 113.69 Kb.
PDF просмотр
tarix04.07.2017
ölçüsü113.69 Kb.

52

ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 1

In the present paper, detailed cytomorphological investigations in 

Oxyria digyna Hill. from Kashmir Himalaya–India have been 

reported for the first time. All the of 14 investigated popula-

tions of O. digyna are diploid based on x = 7. Out of these 

in two populations 0–2B chromosomes have been recorded 

for the first time while 6 populations differed significantly 

in their meiotic characteristics. Meiotic abnormalities du-

ring male meiosis observed include inter PMC chromatin 

transfer (cytomixis). Non-synchronous disjunction of some 

bivalents, laggards and bridges at anaphases and telophases. 

Consequent to these meiotic anomalies, microsporogenesis 

in meiocytes is abnormal resulting in to dyads, triads and 

polyads with or without micronuclei. The overall effect is 

seen in reduced pollen fertility. Unreduced pollen grains were 

observed in some populations, which differed significantly in 

their size compared to the normal (reduced) pollen grains. It 

is observed that a smaller frequency of pollen grains differed 

morphologically in Aharbal and Yosmarg populations. The 

remaining eight populations showed regular meiotic course

normal microsporogenesis and high percentage of pollen 

fertility (95.09–99.09 %).

Key words: Oxyria digyna, cytomorphology, B-chromoso-

mes, meiotic abnormalities.

Introduction. The mountain Sorrel (Oxyria digyna 

Hill.), a monotypic species of family Polygonaceae 

is a succulent herb having rounded, cordate or 

reniform mostly radical leaves and greenish or 

reddish flowers borne in panicles. In India, it is 

found in the higher reaches of Himalayas from 

Kashmir to Sikkim and flowers from May–July. 

The herb has antiscorbutic and refrigent properties 

[1, 2]. Its leaf extract is used to improve diges-

tion by tribals in Ladakh [3, 4]. It is a highly cold 

tolerant species and can survive under continuous 

snow cover for two to three years in succession 

[5]. The different populations of the species are 

quite distinct morphologically and show consider-

able variation in leaf size, stem / petiole colour and 

inflorescence size, etc. Cytological data have aided 

or even made possible taxonomic decisions for ex-

ample in tracing the origin of hybrids. Though the 

available literature indicates that the species has 

been cytologically investigated across the world but 

no chromosomal information is available about In-

dian germplasm of O. digyna. To fill in the lacunae, 

therefore, the present study on meiotic analysis of 

14 populations of this species from Kashmir Hima-

laya was undertaken to understand the cytological 

status of this species.



Materials and methods. The plant material was 

collected from the wild populations of O. digyna 

from Kashmir and cold deserts of Ladakh (J & 

K), India (Fig. 1) during the months of May–July 

over a period of three years (2008–2011). The 

voucher specimens of all the cytologically studied 

populations have been deposited in the Herbarium, 

Department of Botany, Punjabi University, Patiala 

(PUN). For meiotic analysis the young and 

unopened floral buds were fixed in freshly prepared 

carnoy’s fixative (6 alcohol : 3 chloroform : 1 acetic 

acid v/v/v) for 24 hrs and then preserved in 70 % 

alcohol at 4 ºC in the refrigerator. The cytological 

preparations were made using the squash technique 

in 2 % acetocarmine. A number of temporary slides 

were examined to determine the exact chromosome 

number at different stages and meiotic abnormalities, 

if any. Pollen fertility was estimated following 

Marks [6] method using pollen stanibility and well 

filled nature as a measure of fertility. Shrunken and 

unstained pollens were considered to be apparently 

infertile. Average size (equatorial and polar axis) of 

stained pollen grains has been estimated by taking 

several readings in case of each populations of O. 



digyna. Photomicrographs of chromosome counts 

and pollen grains were taken from freshly prepared 

slides using Nikon 80i Eclipse  microscope. For 

previous chromosome reports various indexes to 

plant chromosome numbers such as Darlington 

and Wylie [7], Fedorov [8], Moore [9], Goldblatt 

[10], Goldblatt and Johnson [11], Kumar and 

Subramaniam [12] and Khatoon and Ali [13] were 

consulted.

Results. Present investigation on as many as 14 

populations of O. digyna from Kashmir and Ladakh 

Himalaya revealed that the plants show noticeable 

interpopulation morphological variability. The plants

clearly exhibit prostrate and erect habit. Popu-

UMER FAROOQ, M.I.S. SAGGOO

Department of Botany, Punjabi University, Patiala 147002, Punjab, India

E-mail: darumer786@gmail.com



CYTOMORPHOLOGICAL INVESTIGATIONS 

IN OXYRIA DIGYNA HILL. FROM THE KASHMIR HIMALAYA, INDIA 

© UMER FAROOQ, M.I.S. SAGGOO, 2014



53

Cytomorphological investigations in Oxyria digyna Hill. from the Kashmir Himalaya, India 

ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 1

lations of O. digyna collected from Hirpora 

(2450 m), Kongwatan (2600 m), Zogila (3528 m) 

and Khalsar (3300 m) are prostrate where those 

from remaining areas are erect. The data on de-

tailed observation on various morphological para-

meters are provided in Table 1. The plants sho-

wing prostrate habit grow 10–15 cm in height 

and form a mat. The plants have small 1.8–2.5 

×

×



  2.5–3.0 cm (L ×  B) leaves with inflorescence 

growing up to 5.5 cm long (Table 1). The erect 

plants show considerable variation in size and can 

conveniently be placed under three types viz. small 

(up to 15 cm), medium (25–50 cm) and large 

(50–90 cm). The plants showing erect habit have 

1.5–3.4 cm long and 2.0–5.1 cm broad leaves 

with inflorescence growing up to 8.5 cm. The 

colour and texture of leaves and stems also showed 

interpopulation variations. Populations of O. digy-



Table 1. Showing data on different morphological parameters

Accession 

number

Plant 


height, 

cm

Habit



Leaf size, cm

Inflorescence

Stamen 

number


Fruit size, mm

Length


Breadth

L/B


Number

Length, 


cm

Internode 

size, cm

Length


Breadth

55223


55233

55231


55235

55226


55228

55227


56389

55230


55229

55232


55234

55225


55224

14

32



45

25

35



15

40

15



26

10

10



15

70

90



Prostrate

Erect


Erect

Erect


Erect

Prostrate

Erect

Erect


Erect

Prostrate

Prostrate

Erect


Erect

Erect


2

2.5


3.4

2.5


3

1.8


1.5

2

3.2



2.5

1.8


2

2.5


2.5

2.5


3

5.1


3

3.7


2.7

2

2.5



4

3

2.7



2.5

3

3



0.80

0.83


0.66

0.83


0.81

0.66


0.75

0.80


0.80

0.83


0.66

0.80


0.83

0.83


10

7

4



3

7

5



4

5

8



3

4

1



8

10

5.5



6.9

8

4.5



3.2

4

6.5



3.5

4.6


3

4

5



8

8.5


1.7

2.5


4

1.5


3.2

2.7


3.5

2.7


2.7

1.3


2.7

1.5


3.3

3.5


6

5

6



6

7

6



7

6

6



6

6

6



5

5

2



1

3

2



1

1

3



2

1

1



1

1

4



3

3

3



4

3

2



2

4

3



2

2

2



2

5

5



Fig. 1. A map showing different collection 

sites from where Oxyria digyna was collected



54

Umer Farooq, M.I.S. Saggoo

ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 1

Fig. 2. a – a PMC at metaphase I showing 7

II

b – a PMC with 7:7 distribution at anaphase I; c – a PMC showing 



1B chromosome (arrowed); d – a PMC showing 2B chromosomes (arrowed); – a PMC showing laggard and B 

chromosome; f – a PMC with unoriented bivalent at metaphase I; – a PMC showing early disjunction of one bi-

valent at metaphase I; h – a PMC showing late disjunction of bivalent at anaphase-1; i–j – PMC’s showing unequal 

distribution of chromosomes at anaphase-1and anaphase-II; k–l – PMC’s showing chromatin transfer (arrowed); 



m – a PMC showing extra chromatin material (arrowed); n – a PMC showing stickiness of chromosomes; o – a 

PMC showing laggards at anaphase-I; p – a PMC showing chromatin bridge at anaphase II; q–r – diad and triad 

with micronuclei (arrowed); s – a polyad. Scale bar = 10 

m


55

ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 1

Cytomorphological investigations in Oxyria digyna Hill. from the Kashmir Himalaya, India 

na  collected from Zaznar (3200 m), Lidderwat 

(3500 m), and Turtuk (3100 m) possessed perfect 

greenish stems with green and shinny leaves. In 

some populations viz Keller (2200 m), Yosmarg 

(2300 m) the stem and margins of leaf were perfect 

dark brown. Interestingly, all the prostrate plants 

possess 6 anthers per flower while in the erect 

plants the number of anthers per flower varied 

between 5–7 (majority with 6 anthers per flower).

We also present detailed cytological observations 

made on various populations of O. digyna inha-

biting different localities of Kashmir Himalaya 

ranging in altitude from 2200–3528. Information 

on locality, altitude, geographic coordinates plant 

accession numbers, meiotic chromosome number, 

percentage of pollen fertility and average size of 

pollens of the presently studied populations are 

provided in Table 2. Meiotic investigations in the 

plants of all the 14 populations revealed that all 

share the same chromosome number of n = 7. This 

can be confirmed by the presence of 7 bivalents 

at metaphase-I (Fig. 2, a), equal distribution of 

chromosomes at anaphase-I (Fig. 2, b). In two 

populations  viz Lidderwat (3100 m) and Yosmarg 

(2300 m) 0–2B chromosomes were detected (Fig. 

2, cd). The meiotic course was normal in majority 

of the populations. As many as six  populations of O. 

digyna worked out from Hirpora (2450 m), Turtuk 

Ladakh (3100 m), Aharbal (2200 m), Yosmarg 

(2300 m), Changmar Leh Ladakh (3000 m)

and Lidderwat (3100 m) showed meiotic anomalies 

to a range of 8.94 to 23.13 % PMC’s during 

further course of male meiosis. Few PMC’s with 

un-oriented bivalents at metaphase-I (Fig. 2, f

and non-synchronous disjunction of 1–2 bivalents 

was seen in few populations (Fig. 2, g,  h). Un-

equal distribution of chromosomes was observed 

at anaphase-I and anaphase-II stages (Fig. 2, 

i,  j) in plants collected from Yousmarg and 

Lidderwat. As many as five populations exhibited 

the phenomenon of cytomixis (Table 2). Narrow 

cytoplasmic channels forming 1–2 chromatin 

strands involving 2–5 PMC’s were observed and the 

transfer of chromatin material was seen to be both 

uni and bidirectional (Fig. 2, kl). The percentage 

of PMC’s involved in chromatin material transfer 



F ig 3. a–b – pollen grains showing fusion and remaining as a unit, c–h – appar-

ently fertile heterogeneously sized pollen grains. (Observe the different sizes and 

shapes of the pollen grains), i – sterile pollen grain. Scale bar 

= 10  m 


56

Umer Farooq, M.I.S. Saggoo

ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 1

ranged between 7.14–10.01 %. The transfer of chro-

matin material resulted in the formation of hy-

perploid cells (Fig. 2, m). During the present stu-

dy all the six abnormal populations showed chro-

mosomal stickiness with high percentage (4.34 %) 

in the Hirpora population (2450 m) and lowest 

(1.49 %) in the Changmar (3000 m) Leh Ladakh 

population (Fig. 2, n). Similarly presence of laggards 

and bridges at A-I and A-II (Fig. 2, op) were the 

most common aberrations among all the abnormal 

populations. Consequent to these abnormalities, 

microsporogenesis was abnormal characterised by 

the presence of monads, diads, triads and polyads 

with or without micronuclei. (Fig. 2, q–s).

Pollen fertility was reduced in all the abnormal 

populations (69–80 %). The above mentioned mei-

Table 2. Information on locality, altitude, geographic coordinates, plant accession numbers, 

meiotic chromosome number, meiotic abnormalities, percentage of pollen fertility and average size of pollens 

Note. CYM – cytomixis, STC – stickiness, UOB – un-oriented bivalent, BRG – bridge, LAG – laggard, MPT – 

multipolarity.

Locality (Altitude, coordinates)

Acces-

sion 


number 

(PUN)


n

PMCs with meiotic abnormalities, %

Pollen 

ferti-


lity, 

Average pollen 



size,  m 

CYM


STC

UOB


BRG

LAG


MPT

Shopian: Hirpora, 2450 m, 

33º 47' N 74º 45' E

Shopian: Dhobijan, 3000 m, 

33º 37' N 74º 32' E

Shopian: Zaznar, 3200 m,

33º 38' N 74º 46' E

Shopian: Keller, 2200 m, 

33º 43' N 74º 83' E

Kulgam : Aharbal, 2200 m, 

33º 38' N 74º 47' E

Kulgam : Kongwatan, 2600 m, 

33º 36' N 74º 46' E

Badgam: Yosmarg, 2300 m, 

33º 47' N 74º 39' E

Anantnag: Lidderwat, 3500 m, 

4º 04' N, 75º 14' E

Baramulla: Tangmarg, 2500 m,

 34º 32' N, 25º 17' E

Ganderbal: Zogila,3528 m, 

34º 16' N, 75º 28' E

Leh: Khalsar, 3300 m, 

34º 31' N, 77º 41' E

Leh: Changmar, 3000 m,

34º 49' N, 77º 05' E

Leh: Bogdan, 2900 m, 

34º 48' N, 77º 02' E

Leh: Turtuk, 3100 m, 

34º 50' N, 76º 49' E

55223


55233

55231


55235

55226


55228

55227


56389

55230


55229

55232


55234

55225


55224

7

7



7

7

7



7

7+0-2B


7+0-1B

7

7



7

7

7



7

7.60




9.09

10.01



7.14





9.75

4.34




3.89

4.28



2.85





3.65

2.17




2.59





1.49


2.43


5.43 



7.79


7.14






6.09

6.52




6.49

5.71



4.28



4.47


7.31






2.85

5.71




2.98

3.65



73.91

96.95


95.04

98.07


70.12

98.09


70.01

73.33


97.10

96.09


98.53

80.59


97.06

69.51


22.31 

× 21.68, 

17.20 

× 16.71


16.74 

× 15.34


16.61 

× 15.68


16.70 

× 15.87


28.79 

× 27.91, 

22.59 

× 19.91, 



16.44 

× 15.53


16.87 

× 15.86


30.11 

× 29.71, 

24.93 

× 23.67,


17.55 

× 16.54


27.80 

× 26.97, 

16.06 

× 15.74, 



5.29 

× 4.28


16.60 

× 15.57


17.79 

× 16.68


17.29 

× 16.25


21.06 

× 20.05, 

16.72 

× 15.32


16.54 

× 15.59


25.23 

× 23.57, 

17.57 

× 16.86, 



11.56 

× 10.23 


57

ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 1

Cytomorphological investigations in Oxyria digyna Hill. from the Kashmir Himalaya, India 

otic irregularities lead to the formation of heteroge-

nous sized apparently fertile pollen grains which can 

be categorised into large, small and normal sized 

pollens (Table 2). Some pollen grains, though in 

small frequency could not complete their cytokinesis 

after T-II stage of meiosis and therefore remained 

together as a unit (Fig. 3, ab). The occurrence of 

large sized pollen grains was observed in Aharbal 

(4.71 %), Yosmarg (5.91 %) and Liderwat (5.93 %) 

populations along with normal sized pollen grains. 

These large pollen grains might be un-reduced or 

hyperploid in nature. The diameter of such pol-

len grains ranged from 27.80 

×

 26.97 to 30.11 



×

 

×



 29.71  m, while the diameter of the normal sized 

pollen grains was 15.53 

×

 16.41  m. Besides, the 



normal pollen grains smaller pollen grains (5.29 

×

×



 4.28  m) were also present. It was interesting to 

see that in Aharbal and Yosmarg populations a small 

percentage of pollen grains also differed morpholog-

ically. The different shapes of pollen grains observed 

were round, oval and elliptical (Fig. 3, c–h).

Discussion. Oxyria is a monotypic genus and ex-

hibits morphological and chromosomal differences. 

The present diploid chromosome number of n = 7 

for the species is the first report from India. It is 

also note worthy that the B chromosomes (0–2B) 

have been reported for the first time in the genus. 

Earlier studies revealed 2n = 14, 28, 42 (diploid, 

tetraploid and hexaploid cytotypes) [13–19].

B chromosomes can be present or absent in 

different individuals within a population and do 

not pair or recombine with any of the A chro-

mosomes during meiosis [20]. It is believed that 

B chromosomes may have arisen by the frag-

mentation of A chromosomes or by a greater 

degree of heterochromatinization [21]. Generally 

it is accepted that B chromosomes do not have 

any effect on the growth and development of 

plants, but it is now shown that pollen abortion in 



Ornithogalum candatum is related to B chromosomes 

[22]. It seems that there is no correlation between 

B chromosomes and pollen sterility.

Meiotic abnormalities. Present study has revealed 

the following meiotic abnormalities in this species.



Cytomixis in PMCs. Migration of chromatin ma-

terial among adjacent meiocytes occurs through 

cytoplasmic connections originating from the plas-

modesmata formed within the anther tissues [23]. 

The role of cytomixis in plant evolution is con-

sidered an additional mechanism for the origin 

of aneuploidy and polyploidy as it results in the 

formation of unreduced pollen grains as reported 

in several plant species [23–25]. In some cases, 

cytomixis may lead to the migration of whole 

chromatin among neighbouring meiocytes and lead 

to the formation of un-reduced gametes. In the 

present case, hyperploid nature was seen in some 

PMC’s and the product of such PMC’s in these 

individuals yield variable sized fertile and sterile 

pollen grains.



Chromosome stickiness. Chromosome stickiness 

is characterised by chromosome clustering during 

different phases of cell cycle and it ranged from a 

mild phenomenon involving a few chromosomes to 

an extensive one involving the entire chromosome 

complement. Genetic and environmental factors as 

well as genomic-environmental interactions have 

been considered to be the reason for chromosome 

stickiness in different plant species [26, 27].

Spindle abnormalities. Spindles play a crucial role 

in chromosome alignment during metaphase [25]. 

Any disturbance in the spindle apparatus may result 

in the random dis-orientation of chromosomes 

in the PMC’s. Multipolar spindles also produce 

un-balanced and sterile gametes. Environmental 

influence and genotypic interactions have been seen 

responsible for abnormal spindle formation [26].



Non-synchronous disjunction. Generally speaking,

different chromosomes of a complement disjunct 

almost simultaneously, but in some taxa, non-syn-

chronization in the disjunction of bivalents have 

been reported. These anomalies in the chromo-

some separation might be due to different rates 

of terminalisation of various chromosomes of a 

complement [28], changed homology of chromo-

somes [29], or absence of coordination between 

chromosome and spindle [30]. Sometimes due 

to late disjunction, bivalents lag behind forming 

micronuclei which ultimately lead to abnormal 

microsporogenesis. As a consequence of late dis-

junction of bivalents bridges are often noticed at 

anaphases and telophases due to interlocking of 

chiasmata. The delayed separation of some biva-

lents in the presently investigated species caused 

irregular distribution of chromosomes at A-I (8 + 

+ 6) and A-II (8 + 8 + 6 + 6). This phenomenon can 

be considered of immense cytological significance 

as it can lead to the formation of gametes with n+1 

or n–1 number of chromosomes causing numerical 

variation in chromosome number.  


58

Umer Farooq, M.I.S. Saggoo

ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 1

Un-reduced (2n) pollen grains. The trend to 

form 2n gametes in plants is highly variable and it 

varies among individuals within a single taxonomic 

group or even among flowers of an individual 

plant [31]. The production of unreduced gametes 

is heritable, governed by many genes and increases 

with increasing environmental stress, eg. Frost, 

wounding, herbivory, water deficit and lack of 

nutrients [32]. Different cytological mechanisms are 

responsible for the production of 2n gametes. It has 

been shown that 2n gametes in Brachiaria brizantha 

are produced from total absence either of the first 

or the second cytokinesis [33]. Further, influence 

of seasonal and environmental factors such as high 

and low temperature on 2n gamete formation have 

been shown [31]. Besides, cytomixis might have 

produced un-reduced pollen grains in this species. 

Different methods (morphological, flow cytometery, 

cytological) have been used to detect 2n gametes. 

The most direct method of screening for 2n pollen 

involves the examination of the range of the size of 

pollens produced by an individual, as with increase 

in DNA content the cell volume increases which in 

turn influence the pollen diameter. 

Although the cytological status of these hete-

rogenous sized pollen grains could not be ascertained 

but certainly their role in the production of 

aneuploid and polyploid plants could not be ruled 

out, because of the apparent fertile nature of these 

pollen grains.



The authors are grateful to the University Grants 

Commission, New Delhi for providing financial as-

sistance under the DRS SAP III and DST programmes. 

Thanks are also due to the Head, Department of Bo-

tany, Punjabi University, Patiala for necessary labo-

ratory facilities. 

Umer Farooq, M.I.S. Saggoo

ÖÈÒÎÌÎÐÔÎËÎÃÈ×ÅÑÊÈÅ ÈÑÑËÅÄÎÂÀÍÈß 



OXYRIA DIGYNA HILL. ÈÇ ÊÀØÌÈÐÀ 

(ÃÈÌÀËÀÈ, ÈÍÄÈß)

Ïðèâîäÿòñÿ äåòàëüíûå öèòîìîðôîëîãè÷åñêèå èñ-

ñëåäîâàíèÿ Oxyria digyna Hill èç Êàøìèðà (Ãèìàëàè, 

Èíäèÿ). Âñå 14 èçó÷åííûõ ïîïóëÿöèé ÿâëÿþòñÿ äèï-

ëîèäíûìè, ãäå x = 7. Èç íèõ â äâóõ ïîïóëÿöèÿõ 

âïåðâûå îïèñàíû 0–2B õðîìîñîìû, òîãäà êàê øåñòü

ïîïóëÿöèé ñèëüíî ðàçëè÷àëèñü ïî ñâîèì ìåéîòè÷åñ-

êèì õàðàêòåðèñòèêàì. Àíîìàëèè ìåéîçà ïðè ìèêðî-

ñïîðîãåíåçå âêëþ÷àëè öèòîìèêñèñ, íåñèíõðîííîå ðàñ-

õîæäåíèå íåêîòîðûõ áèâàëåíòîâ, çàäåðæêè è ìîñòû

â àíàôàçàõ è òåëîôàçàõ. Âîçíèêàþùèé â ñâÿçè ñ

ýòèì àíîìàëüíûé ìèêðîñïîðîãåíåç ïðèâîäèò ê ôîð-

ìèðîâàíèþ äèàä, òðèàä è ïîëèàä êàê ñ ìèêðîÿäðà-

ìè, òàê è áåç íèõ. Îáùèì ýôôåêòîì ÿâëÿåòñÿ ñíè-

æåíèå ôåðòèëüíîñòè ïûëüöû. Â íåêîòîðûõ ïîïóëÿ-

öèÿõ íàáëþäàëè íåðåäóöèðîâàííûå ïûëüöåâûå çåð-

íà, êîòîðûå ïî âåëè÷èíå çíà÷èòåëüíî îòëè÷àëèñü 

îò íîðìàëüíûõ. Â ïîïóëÿöèÿõ Aharbal è Yosmarg

íåêîòîðûå ïûëüöåâûå çåðíà îòëè÷àëèñü ìîðôîëîãè-

÷åñêè. Îñòàâøèåñÿ âîñåìü ïîïóëÿöèé ïðîÿâëÿëè íîð-

ìàëüíûé õîä ìåéîçà, íîðìàëüíûé ìèêðîñïîðîãåíåç è 

âûñîêèé ïðîöåíò ôåðòèëüíîñòè ïûëüöû (95,09–

99,09 %). 

REFERENCES

1. Pullaiah T. Encyclopaedia of world medicinal plants. 

New Delhi : Regency publ., 2006. – Vol. I – 2442 p.

2. Chauhan N.S. Medicinal and aromatic plants of Hi-

machal Pradesh. – New Delhi : Indus publ., 1999. – 

632 p.


3.  Ballah B., Churasia O.P. Medicinal plants of cold 

desert Ladakh used in the treatment of stomach dis-

orders // Indian J. Tradit. Know. – 2009. – 

8. – 

P. 185–190.

4.  Rana M.S., Samant S.S. Diversity, indigenous uses 

and conservation status of medicinal plants in Manali 

wild life sanctuary, North West Himalaya // Indian 

J. Tradit. Know. – 2011. – 



10. – P. 439–459.

5. Crawford R.M.M. Plants at the margin : Ecologi-

cal limits and climate change. – Cambridge : Univ. 

press, 2008. – 494 p.

6. Marks G.E. An aceto-carmine glycerol jelly for use 

in pollen-fertility counts // Stain Tech. – 1954. – 



29, ¹ 5. – Ð. 277. 

7.  Darlington C.D., Wylie A.P. Chromosome atlas of 

flowering plants. – London : Allen and Unwin

1995. – 519 p.

8. Fedorov A.N. Chromosome numbers of flowering 

plants. – Leningrad : Acad. Sci. USSR Komarov 

Bot. Inst., 1974.

9. Moore R.J. Index to plant chromosome numbers. 

1967–1971, 1972. 1973–1974 // Regnum Veg., 90, 

91, 96. 1973, 1974, 1977.

10. Goldblatt  P. Index to plant chromosome numbers 

1975–1978, 1979–1981, 1982–1983, 1984–1985. 

Monographs in systematic Botany. Missouri Bot. Gar-

den, USA. Vols. 5, 8, 13, 23. 1981, 1984, 1985, 1988.

11. Goldblatt P., Johnson D.E. Index to plant chromosome 

numbers 1986–1987, 1988–1989, 1990–1991, 1992–

1993, 1994–1995, 1996–1997, 1998–2000, 2001–

2003. Monographs on Systematic Botany. Missouri 

Botanical Garden, USA. Vols. 30, 40, 51, 58, 69, 81, 

94, 106. 1990; 1991; 1994; 1996; 1998; 2000; 2003; 

2006.


59

ISSN 0564–3783. Öèòîëîãèÿ è ãåíåòèêà. 2014. Ò. 48. ¹ 1

Cytomorphological investigations in Oxyria digyna Hill. from the Kashmir Himalaya, India 

12. Kumar V., Subramaniam B. Chromosome Atlas of 

flowering plants of the Indian subcontinent. Vol. I. 

Dicotyledon. – Calcutta : BSI, 1986. – 1095 p.

13. Khatoon S., Ali S.I. Chromosome Atlas of the Angio-

sperms of Pakistan. – Karachi, 1993. – 232 p.

14. Dalgaard  V. Chromosome numbers in some vascular 

plants from the Disko Bugt area (West Greenland) // 

Willdenowia, 1988. – 18. – P. 243–252.

15. Huber W., Baltisberger M. IOPB chromosome data 1. 

Int. Organ // Pl. BiosystNewslett. (Zurich). – 1989. – 

13. – P. 19–20.

16. Krogulevich  R.E. Kariologicheskij analiz vidov Flory 

Vostochnogo Sajana // Flora Pribajkal’ja. – Novosi-

birsk : Nauka, 1978. – P. 19–48 (Russian).

17. Dobes C., Vitek E., Buttler K.R. Documented chromo-

some number checklist of Austrian vascular plants. – 

Vienna, 2000. – 642 p.

18. Murin A., Haberova I., Zamsran C. Karyological stud-

ies of some species of the Mongolian flora // Folia 

Geobot. Phytotax. – 1980. – 



15. – P. 395–405.

19. Zhukova P.G., Petrovsky V.V. Chromosome num-

bers and taxonomy of some plant species from the 

northern Asia regions // Bot. Zurn. – 1987. – 72. – 

P. 1617–1624.

20. Jones R.N., Huben A. B-chromosome in plants: es-

capees from the A-chromosome genome? // Trends 

Plant Sci. – 2003. – 



8. – P. 417–423.

21. Parker J.S., Jones G.H., Edger L.A., Whitehouse C. The 

population cytogenetics of Crepis capillaris 3. B-chro-

mosome effects on meiosis  // Heriditas. – 1990. – 



64. – P. 377–385.

22. Hui C., Shamshi H.I., Haijum Z. et al. Cytologi-

cal evidence of pollen abortion in Ornithogalum 

caudatum Ait // Afr. J. Biotech. – 2011. – 10. – 

P. 14061–14066.

23. Falistoco E., Tosti T., Falcinelli M. Cytomixis in pol-

len mother cells of diploid Dactylis, one of the ori-

gins of 2n gametes // J. Heredity. – 1995. – 86. – 

P. 448–453.

24. Latoo S.K., Khan S., Bamotra S., Dhar A.K. Cytomix-

is impairs meiosis and influences reproductive success 

in  Chlorophytum comosum (Thunb.) Jacq.: An addi-

tional strategy and possible implications // J. Biosci. – 

2006. – 

31. – P. 629–637.

25. Shabrangi A., Sheidai M., Majd A. et al. Cytological 

abnormalities caused by extremely low frequency elec-

tromagnetic fields in Canola // Sci. Asia. – 2010. – 



36. – P. 292–296.

26. Nirmala A., Rao P.N. Genesis of chromosome nu-

merical mosacism in higher plants // Nucleus. – 

1996. – 


39. – P. 151–175.

27. Baptista-Giacomelli F.R., Pagliarini M.S., Almeida J.L. 

Meiotic behaviour in several Brazilian oat cultivars 

(Avena sativa L.) // Cytologia. – 2000. – 65. – 

P. 371–378.

28. Darlington C.D. Recent advances in cytology. – Lon-

don : Churchill & Co., 1937.

29. Koul  M.L.H. Cytogenetic of polyploids. 4. Cytolo-

gy of photoperiodic races and cytotypes of Ageratum 

conyzoides L. // Cytologia. – 1971. – 36. – P. 421–

434.


30. Sharma A. The Chromosomes. – New Delhi : Oxford 

& IBH Publ. Co., 1976.

31. Bretagnolle F., Thomson J.D. Gametes with the so-

matic chromosome number: mechanisms of their 

formation and role in the evolution of autopolyploid 

plants // New Phytol. – 1995. – 



192. – P. 1–22. 

32. Husband  B.C. The role of triploid hybrids in the evo-

lutionary dynamics of mixed ploidy populations // 

Biol. J. Linn. Soc. – 2004. – 82. – P. 537–546.

33. Risso-Pascotto C., Pagliarini M.S., Valle C.B., Mendes-

Bonato A.B. Chromosome number and microsporo-

genesis in pentaploid accession of Brachiaria brizantha 

(Gramineae) // Plant Breed. – 2003. – 

122. – 

P. 136–140. 



Received 23.07.12


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2016
rəhbərliyinə müraciət

    Ana səhifə