Kampyuter injiniring


Ta`rif 2. In’yeksiya bo’lgan . gomomorfizmga monomorfizm



Yüklə 47,28 Kb.
səhifə3/4
tarix07.01.2024
ölçüsü47,28 Kb.
#202101
1   2   3   4
Xaytbayev Jamshidbek D.T dan

Ta`rif 2. In’yeksiya bo’lgan . gomomorfizmga monomorfizm deb, syur’eksiya bo’lgan gomomorfizmga epimorfizm deb ataladi va bu holda B sistema U sistemaning gomomorf obrazi deyiladi. gomomorfizmga endomorfizm deb ataladi. monomorfizm syur’eksiya bo’lsa va gomomorfizm bo’lsa, unga izomorfizm deb ataladi va quyidagicha belgilanadi . Agar izomorfizm mavjud bo’lsa, U va B sistemalar izomorf deyiladi va kabi belgilanadi. izomorfizmga U sistemaning avtomorfizmi deb ataladi. izomorfizm biyeksiya sistemalar teng quvvatli bo’ladi.
Misol . Berilgan U to’plam uchun sistema sistemaga biyeksiya mavjudligi sababli izomorf bo’ladi. Haqiqatdan ham, De-Morgan qonuniga ko’ra istalgan B va to’plam uchun:
,

Shu bilan birga
Kongruyensiya. Faktor – algebra
Agar ekvivalentlik munosabati uchun istalgan , ixtiyoriy n o’rinli simvol uchun, ixtiyoriy va majmualar uchun bajariladigan bajarilishidan kelib chiqsa, ekvivalent munosabatga algebrada kongruensiya deb ataladi.
Bu barcha amallarni ekvivalentlik munosabati bilan moslanganligini bildiradi.
Masalan, qo’shish amali uchun quyidagicha ifodalanadi: Istalgan elementlar uchun, ixtiyoriy a+b element sinfga tegishli bo’ladi.
A to’plamning konguensiyasi bo’yicha faktor to’plamini qaraymiz:
bu to’plamda signaturali algebrani aniqlaymiz. A algebraning konstanti C ga elementni mos qo’yamiz, bu element to’plamda constant simvol C ga mos keladi. Agar f n-o’rinli dagi simvol bo’lsa, u holda to’plamda f funksiyani quyidagi qoida bo’yicha aniqlaymiz:

Ixtiyoriy elementlar uchun bu ta’rifni korrektligi ya’ni ekvivalentlik sinfidagi qaysi element olinganiga bog’liq emasligiga ishonch hosil qilamiz. Haqiqatdan ham, agar bo’lsa, u holda bo’ladi, bundan kongruentlik xossasiga ko’ra ya’ni
bajariladi.
Bunday hosil qilingan algebraga U algebraning konguensiya
bo’yicha faktor algebrasi deb ataladi.
elementga sinfni mos qo’yuvchi akslantirish U algebra va algebradagi epimorfizm bo’ladi. Bu epimorfizmga tabiiy gomomorfizm deb ataladi.
Agar gomomorfizm bo’lsa, u holda Ker to’plam U algebrada kongruensiya bo’ladi, bu to’plamni gomomorfizmning yadrosi deb ataladi.
Algebraning gomomorf obrazi (aksi) gomomorfizm yadrosi bo’yicha faktor algebrasi izomorfligi haqidagi teoremani keltiramiz.

Yüklə 47,28 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin