5.3.1-Misol(1-holat (a, m) = d uchun.) 1261020 ni 138 ga bo’lgandagi qoldiqni toping.
Yechilishi. Demak, (4.3)formulaga ko’ra, a=126, b=1020, m=138. Quyidagi taqqoslamani yechish kerak:
x ≡ 1261020 (mod 138) (4.5)
1) (a, m) = (126,138) ≠1. Shuning uchun 126 va 138 larni tub ko’paytuvchilarga ajratamiz.
126=2∙32∙7, 138 = 2∙3∙23 ligidan (126,138) = 6. Demak, d = 6.
a= a1d →126 = a1∙6 → a1=21. Demak, 126 =21∙6.
m= m1d →138 = m1∙6 → m1=23. Demak, 138 =23∙6.
x= x1d → x = x1∙6
Endi 126,138 va x larni yangi ko’rinishini (4.5) ga qo’yamiz.
x1∙6 ≡ 126∙1261020-1 (mod 23∙6)
x1∙6 ≡ 21∙6∙1261019 (mod 23∙6) | 6 ga qisqartiramiz.
x1 ≡ 21∙1261019 (mod 23)
Demak, a=126, b=1019, m=23. (a, m) = (126, 23) =1 bo’lgani uchun (4.4) formulaga ko’ra a ≡ a1(mod m) va b ≡ b1(mod φ(m)) dan a1, b1 vaφ(m) larni qiymatini topamiz.
m=23 tub son bo’lgani uchun φ(23) = 22.
126 ≡ a1(mod 23) 126 = 23∙5+11 bo’lgani uchun a1=11.
1019≡ b1(mod 22) 1019 = 22∙46+7 bo’lgani uchun b1=7.
Endi (4.4) formulaga ko’ra x1 ≡ =21∙117 (mod 23)=21∙11∙(113)2(mod 23)= =231∙(1331)2(mod 23) ≡1∙(20)2(mod 23) = 400(mod 23) ≡ 9(mod 23)
231=23∙10+1, 1331=23∙57+20, 400=23∙17+9. Boshda belgilashimizga ko’ra, x= x1∙6≡ 9∙6 (mod 23)=54(mod 23).
Demak, 1261020 ni 138 ga bo’lganda qoldiq 54 ga teng ekan.
Uyga vazifa 5.1-Misol. Bo’linishning qoldiqlarini toping:
a) 109345 ni 14 ga;
b) 439291 ni 60 ga;
c) 293275 ni 48 ga.
5.2-misol. 243402 sonining oxirgi uchta raqamini toping.