KO‘FN dan testlar
##1# f(z) – golomorf funksiya bo‘lsin. U holda = ? ni hisoblang.##
A) Imf(z)
B) Ref '(z)
+C) f '(z)
D) - Ref '(z)
E) Imf '(z)
##2## f(z) – golomorf funksiya bo‘lsin. U holda =? ni hisoblang.##
A) Imf '(z)
B) i·Ref '(z)
+C) - ·f '(z)
D) Ref '(z)
E) –i·Imf '(z)
##3# Ref(z) = x3 +6x2y – 3xy2 – 2y3, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##
A) 2iz3
+B) (1 –2i)z3
C) 3(z –1)3
D) 2z3 – 3
E) z3 + 2z2
##4# Ref(z) = ex(x·cosy – y·siny), f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##
A) e z ·sinz
+B) z·e z
C) z ·cosz· e z
D) z + e z
E) e z(z –1)
##5# Ref(z) = x·cosx·chy + y·sinx·shy, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##
+A) z·cosz
B) z·sinz
C) z·chz
D) z·shz
E) chz·cosz
##6# Imf(z) = y·cosy·chx + x·siny·shx, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##
A) i·z·shz
B) i·z·cosz
C) sinz·chz
D) cosz·shz
+E) z·chz
##7# z = (1+i )8·(1 - i ) – 6 uchun |z| va arg z mos ravishda…….. va …… ga teng.##
A)
B)
C)
+D)
E)
##8# Parallelogrammning uchta uchlari berilgan: z1 = 1+i, z2 = 2 +1,5·i, z3 = 3+3·i. z2 uchiga qarama-qarshi yotuvchi to‘rtinchi z4 uchini toping.##
+A) z4=2+2,5·i
B) z4=1,5+2·i
C) z4=1,5+2,5·i
D) z4=2+2·i
E) z4=2,5+ i
##9# cos(2+i ) sonining haqiqiy qismini toping.##
A) cos2· sin1,
+B) ch1·cos2,
C) sin2·sin1
D) sh1·cos2
E) sh1·sin2.
##10# ctg( - i·ln2) sonining mavhum qismini toping.##
A) 5/7
B) 0
C) –1
D) 12/15
+E)15/17
##11# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f( i ) = 0, arg f '( i ) = - shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##
A) i /2
+B) 1/3
C) i /4
D) 1/5
E) i /6
##12# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f(2i ) = 0, arg f '( 2i ) = 0 shartlari bilan konform akslantirsin. U holda f( 3i )=? ni toping.##
+A) i /5
B) – i /4
C) 1 /3
D) – 2/3
E) 3i /4
##13# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f(1+ i ) = 0, arg f '( 1+i ) = - shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##
A) (i+1)/3
B) (i-1)/(3+i)
C) i/(5-i)
D) –i/(5+i)
+E) (i-1)/(3i-1)
##14# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w-1| < 1 doiraga f( i ) = 1, arg f '( i ) = 0 shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##
A) (i-3)/3
B) (3-i) /3
+C) (i+3)/3
D) –(i+3)/3
E) 3/2
##15# w = f(z) funksiya |z| < 2 doiraga Rew > 0 o‘ng yarim tekislikni f( 0 ) = 1, arg f '( 0 ) = shartlari bilan konform akslantirsin. U holda f(i )=? ni toping.##
+A) 1/3
B) 1/4
C) 1/5
D) 1/6
E) 1/2
##16# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 1/2 ) = 0, arg f ' (1/2 ) = 0 shartlari bilan konform akslantirsin. U holda f(0)=?
A) 1/2
B) i /2
C) –i /2
+D) –1/2
E) 1/3
##17# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 1/2 ) = 0, arg f ' (1/2 ) =/2 shartlari bilan konform akslantirsin. U holda f(0)=? ni toping.##
A) –1/2
+B) 1/2
C) i /2
D) 1/4
E) –1/4.
##18# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 0 ) = 0, arg f ' (0) =-/2 shartlari bilan konform akslantirsin. U holda f (1/2)=? ni toping.##
+A) –i /2
B) i /2
C) 1/2
D) -1/3
E) i /3
##19# w = f(z) funksiya |z| < 1 doirani | w-1| < 1 birlik doiraga f(0) = 1/2, f (1 ) = 0 shartlari bilan konform akslantirsin. U holda f( 1/2 )=? ni toping.##
A) 1/3
B) 1/4
+C) 1/5
D) 1/6
E) 1/7
##20# w = f(z) funksiya |z-2| < 1 doirani |w-2i| < 2 birlik doiraga f( 2 ) = i , arg f ' (2 ) = 0 shartlari bilan konform akslantirsin. U holda f( 3/2) =? ni toping.##
A) i
B) (5i+1)/2
C) (-13+16 i )/15
+D) (-12+14 i )/17
E) 3i
##21# 1/(1-z)2 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 1/2
B) –1/2
+C) 3
D) –3
E) 1/6
##22# 2/(1+z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
+A) 12
B) 6
C) 3
D) 1/3
E) 1/12
##23# z(z+2)/(2-z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 2
B) –2
C) –1/2
+D) 1/2
E) 1/3
##24# 1/(z2 +9) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 1/9
B) –1/25
C) 1/49
+D) -1/81
E) 1/121
##25# 1/(1+z2)2 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 1
+B) –2
C) 3
D) –4
E) 5
##26# (z2+4z4+z6)/(1-z2)4 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 5
B) –4
C) 3
D) –2
+E) 1
##27# z/(1-z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 0
B) 1/2
C) 1/3
+D) 3
E) 2
##28# 1/(z+1)(z-2) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.## +A) –3/8
B) 3/4
C) 3/2
D) –3/2
E) 3/8
##29# (2z-5)/(z2-5z+6) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 25/127
B) 12/35
+C) –35/216
D) –13/41
E) 3/7
##30# 1/(z2-1)2(z2+4) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 6/17
+B) 7/16
C) 5/18
D) 9/14
E) 8/15
##31# 1/sinz funksiyaning z = 2 nuqtadagi qoldig‘ini toping.##
A)
+B) 1/
C) 2
D) 1/2
E) -
##32# ctgz funksiyaning z = 3 nuqtadagi qoldig‘ini toping.##
+A) 1/
B)
C) 3
D) 1/3
E) -
##33# thz funksiyaning z = i/2 nuqtadagi qoldig‘ini toping.##
A)
B) -
C) 3
D) 2
+E) 1
##34# cth2z funksiyaning z = 0 nuqtadagi qoldig‘ini toping.##
A)
B) -
+C) 0
D) –1
E) 1
##35# cosz/(z-1)2 funksiyaning z = 1 nuqtadagi qoldig‘ini toping.##
A) cos1
B) –cos1
C) sin1
+D) –sin1
E) 0
##36# 1/(e z +1) funksiyaning z = i nuqtadagi qoldig‘ini toping.##
A) -
B)
C) 0
D) 1
+E) –1
##37# sinz/(z-1)3 funksiyaning z =1 nuqtadagi qoldig‘ini toping.##
A) 2
B) 1
+C) 0
D) –1
E) -2
##38# 1/sinz2 funksiyaning z = 0 nuqtadagi qoldig‘ini toping.##
+A) 0
B) 1/2
C) 1
D) –1
E) 1/3
##39# cos[(z+2)/2z] funksiyaning z = nuqtadagi qoldig‘ini toping.##
+A) ,
B) -,
C) 0,
D) 1/,
E) –1/.
##40# z cos2(/z) funksiyaning z = nuqtadagi qoldig‘ini toping.##
A) 3
+B) 2
C)
D) 1
E) 0
##41# Integralni hisoblang: .##
A) –2
B) –1
+C) 0
D) 1
E) 2
##42# Integralni hisoblang: .##
A) i
+B) 2i
C) 3i
D) -i
E) 0
##43# Integralni hisoblang: .##
A) i
B) -i/2
C)i/3
+D)-2i/3
E) 0
##44# Integralni hisoblang: .##
A) 2i cos1
B) 4i sin1
C) 2i(sin1+cos1)
D) 4i (sin1-cos1)
+E) 4i (cos1-sin1)
##45# Integralni hisoblang: .##
A) 2i sin1
+B) i (cos1+2sin1)
C) 4i (sin1 +2cos1)
D) 4i cos1
E) i (2sin1-cos1)
##46# Integralni hisoblang: .##
+A) -2i /9
B) 0
C) i /3
D) 1
E) i
##47# Integralni hisoblang: .##
A) i /3
B) -i /81
+C) -i /121
D) 0
E) 2i / 169
##48# Integralni hisoblang: .##
A) 0
B) i
C) –i
+D) i
E) -i
##49# Integralni hisoblang: .##
+A) 0
B) –i
C)
D)-
E) 1
##50# Integralni hisoblang: .##
A) 2i
B) -2i
C)1
D)-1
+E) 0
##51# (z) – golomorf funksiya bo‘lsin. U holda =? ni toping.##
A) Imf(z)
B) Ref '(z)
+C) f '(z)
D) - Ref '(z)
E) Imf '(z).
##52# – golomorf funksiya bo‘lsin. U holda =? ni toping.##
A) Imf '(z)
B) i·Ref '(z)
+C) - ·f '(z)
D) Ref '(z)
E) –i·Imf '(z)
##53# Ref(z) = x3 +6x2y – 3xy2 – 2y3, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##
A) 2iz3
+B) (1 –2i)z3
C) 3(z –1)3
D) 2z3 – 3
E) z3 + 2z2
##54# f(z) = ex(x·cosy – y·siny), f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##
A) e z ·sinz
+B) z·e z
C) z ·cosz· e z
D) z + e z
E) e z(z –1)
##55# Ref(z) = x·cosx·chy + y·sinx·shy, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##
+A) z·cosz
B) z·sinz
C) z·chz
D) z·shz
E) chz·cosz
##56# Imf(z) = y·cosy·chx + x·siny·shx, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##
A) i·z·shz,
B) i·z·cosz,
C) sinz·chz
D) cosz·shz,
+E) z·chz.
##57# z = (1+i )8·(1 - i ) – 6 uchun |z| va arg z mos ravishda.##
A)
B)
C)
+D)
E)
##58# Parallelogrammning uchta uchlari berilgan: z1 = 1+i, z2 = 2 +1,5·i, z3 = 3+3·i. z2 uchiga qarama-qarshi yotuvchi to‘rtinchi z4 uchini toping.##
+A) z4=2+2,5·i
B) z4=1,5+2·i
C) z4=1,5+2,5·i
D) z4=2+2·i
E) z4=2,5+ i
##59# cos(2+i ) sonining haqiqiy qismini toping.##
A) cos2· sin1
+B) ch1·cos2
C) sin2·sin1
D) sh1·cos2
E) sh1·sin2
##60# ctg( - i·ln2) sonining mavhum qismini toping.##
A) 5/7
B) 0
C) –1
D) 12/15
+E)15/17
##61# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f( i ) = 0, arg f '( i ) = - shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##
A) i /2
+B) 1/3
C) i /4
D) 1/5
E) i /6
##62# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f(2i ) = 0, arg f '( 2i ) = 0 shartlari bilan konform akslantirsin. U holda f( 3i )=? ni toping.##
+A) i /5
B) – i /4
C) 1 /3
D) – 2/3
E) 3i /4
##63# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f(1+ i ) = 0, arg f '( 1+i ) = - shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##
A) (i+1)/3
B) (i-1)/(3+i)
C) i/(5-i)
D) –i/(5+i)
+E) (i-1)/(3i-1)
##64# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w-1| < 1 doiraga f( i ) = 1, arg f '( i ) = 0 shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##
A) (i-3)/3
B) (3-i) /3
+C) (i+3)/3
D) –(i+3)/3
E) 3/2
##65# w = f(z) funksiya |z| < 2 doiraga Rew > 0 o‘ng yarim tekislikni f( 0 ) = 1, arg f '( 0 ) = shartlari bilan konform akslantirsin. U holda f(i )=? ni toping.##
+A) 1/3
B) 1/4
C) 1/5
D) 1/6
E) 1/2
##66# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 1/2 ) = 0, arg f ' (1/2 ) = 0 shartlari bilan konform akslantirsin. U holda f(0)=? ni toping.##
A) 1/2
B) i /2
C) –i /2
+D) –1/2
E) 1/3
##67# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 1/2 ) = 0, arg f ' (1/2 ) =/2 shartlari bilan konform akslantirsin. U holda f(0)=? ni toping.##
A) –1/2
+B) 1/2
C) i /2
D) 1/4
E) –1/4
##68# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 0 ) = 0, arg f ' (0) =-/2 shartlari bilan konform akslantirsin. U holda f (1/2)=? ni toping.##
+A) –i /2
B) i /2
C) 1/2
D) -1/3
E) i /3
##69# w = f(z) funksiya |z| < 1 doirani | w-1| < 1 birlik doiraga f(0) = 1/2, f (1 ) = 0 shartlari bilan konform akslantirsin. U holda f( 1/2 )=? ni toping.##
A) 1/3
B) 1/4
+C) 1/5
D) 1/6
E) 1/7
##70# w = f(z) funksiya |z-2| < 1 doirani |w-2i| < 2 birlik doiraga f( 2 ) = i , arg f ' (2 ) = 0 shartlari bilan konform akslantirsin. U holda f( 3/2) =? ni toping.##
A) i
B) (5i+1)/2
C) (-13+16 i )/15
+D) (-12+14 i )/17
E) 3i
##71# 1/(1-z)2 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 1/2
B) –1/2
+C) 3
D) –3
E) 1/6
##72# 2/(1+z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
+A) 12
B) 6
C) 3
D) 1/3
E) 1/12
##73# z(z+2)/(2-z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.## A) 2
B) –2
C) –1/2
+D) 1/2
E) 1/3
##74# 1/(z2 +9) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 1/9
B) –1/25
C) 1/49
+D) -1/81
E) 1/121
##75# 1/(1+z2)2 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 1
+B) –2
C) 3
D) –4
E) 5
##76# (z2+4z4+z6)/(1-z2)4 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 5
B) –4
C) 3
D) –2
+E) 1
##77# z/(1-z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 0
B) 1/2
C) 1/3
+D) 3
E) 2
##78# 1/(z+1)(z-2) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.## +A) –3/8
B) 3/4
C) 3/2
D) –3/2
E) 3/8
##79# (2z-5)/(z2-5z+6) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 25/127
B) 12/35
+C) –35/216
D) –13/41
E) 3/7
##80# 1/(z2-1)2(z2+4) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 6/17
+B) 7/16
C) 5/18
D) 9/14
E) 8/15
##81# 1/sinz funksiyaning z = 2 nuqtadagi qoldig‘ini toping.##
A)
+B) 1/
C) 2
D) 1/2
E) -
##82# ctgz funksiyaning z = 3 nuqtadagi qoldig‘ini toping.##
+A) 1/
B)
C) 3
D) 1/3
E) -
##83# thz funksiyaning z = i/2 nuqtadagi qoldig‘ini toping.##
A)
B) -
C) 3
D) 2
+E) 1
##84# th2z funksiyaning z = 0 nuqtadagi qoldig‘ini toping.##
A)
B) -
+C) 0
D) –1
E) 1
##85# cosz/(z-1)2 funksiyaning z = 1 nuqtadagi qoldig‘ini toping.##
A) cos1
B) –cos1
C) sin1
+D) –sin1
E) 0
##86# 1/(e z +1) funksiyaning z = i nuqtadagi qoldig‘ini toping.##
A) -
B)
C) 0
D) 1
+E) –1
##87# sinz/(z-1)3 funksiyaning z =1 nuqtadagi qoldig‘ini toping.##
A) 2
B) 1
+C) 0
D) –1
E) -2
##88# 1/sinz2 funksiyaning z = 0 nuqtadagi qoldig‘ini toping.##
+A) 0
B) 1/2
C) 1
D) –1
E) 1/3
##89# cos[(z+2)/2z] funksiyaning z = nuqtadagi qoldig‘ini toping.##
+A)
B) -
C) 0
D) 1/
E) –1/
##90# z cos2(/z) funksiyaning z = nuqtadagi qoldig‘ini toping.##
A) 3,
+B) 2,
C) ,
D) 1,
E) 0
##91# Integralni hisoblang: .##
A) –2
B) –1
+C) 0
D) 1
E) 2
##92# Integralni hisoblang: .##
A) i
+B) 2i
C) 3i
D) -i
E) 0
##93# Integralni hisoblang: .##
A) i
B) -i/2
C)i/3
+D)-2i/3
E) 0
##94# Integralni hisoblang: .##
A) 2i cos1
B) 4i sin1
C) 2i(sin1+cos1)
D) 4i (sin1-cos1)
+E) 4i (cos1-sin1)
##95# Integralni hisoblang: .##
A) 2i sin1
+B) i (cos1+2sin1)
C) 4i (sin1 +2cos1)
D) 4i cos1
E) i (2sin1-cos1)
##96# Integralni hisoblang: .##
+A) -2i /9
B) 0
C) i /3
D) 1
E) i
##97# Integralni hisoblang: .##
A) i /3
B) -i /81
+C) -i /121
D) 0
E) 2i / 169
##98# Integralni hisoblang: .##
A) 0
B) i
C) –i
+D) i
E) -i
##99# Integralni hisoblang: .##
+A) 0
B) –i
C)
D)-
E) 1
##100# Integralni hisoblang: .##
A) 2i
B) -2i
C)1
D)-1
+E) 0
1 - C
|
21 - C
|
41 - C
|
61 - B
|
81 - B
|
2 - C
|
22 - A
|
42 - B
|
62 - A
|
82 - A
|
3 - B
|
23 - D
|
43 - D
|
63 - E
|
83 - E
|
4 - B
|
24 - D
|
44 - E
|
64 - C
|
84 - C
|
5 - A
|
25 - B
|
45 - B
|
65 - A
|
85 - D
|
6 - E
|
26 - E
|
46 - A
|
66 - D
|
86 - E
|
7 - D
|
27 - D
|
47 - C
|
67 - B
|
87 - C
|
8 - A
|
28 - A
|
48 - D
|
68 - A
|
88 - A
|
9 - B
|
29 - C
|
49 - A
|
69 - C
|
89 - A
|
10 - E
|
30 - B
|
50 - E
|
70 - D
|
90 - B
|
11 - B
|
31 - B
|
51 - C
|
71 - C
|
91 - C
|
12 - A
|
32 - A
|
52 - C
|
72 - A
|
92 - B
|
13 - E
|
33 - E
|
53 - B
|
73 - D
|
93 - D
|
14 - C
|
34 - C
|
54 - B
|
74 - D
|
94 - E
|
15 - A
|
35 - D
|
55 - A
|
75 - B
|
95 - B
|
16 - D
|
36 - E
|
56 - E
|
76 - E
|
96 - A
|
17 - B
|
37 - C
|
57 - D
|
77 - D
|
97 - C
|
18 - A
|
38 - A
|
58 - A
|
78 - A
|
98 - D
|
19 - C
|
39 - A
|
59 - B
|
79 - C
|
99 - A
|
20 - D
|
40 - B
|
60 - E
|
80 - B
|
100 - E
|
8
Dostları ilə paylaş: |