Large-Scale Methamphetamine Manufacture



Yüklə 398 Kb.
səhifə16/21
tarix30.04.2023
ölçüsü398 Kb.
#105053
1   ...   13   14   15   16   17   18   19   20   21
dokumen.tips methamphetamine-large-scale

5.4 Methylamine Solution


In this step we will mix methylamine hydrochloride and sodium hydroxide to release methylamine gas, which is then condensed with dry ice-/alcohol, allowing us to collect pure methylamine liquid and store it in a water solution.
Before one can proceed, one must do some preparatory work to make things go smoothly. About 8 liters of 50% sodium hydroxide solution must be prepared the night before. In addition, a one gallon bottle (used wine jugs) containing 2 kg of crushed ice should be placed in the bottom of the freezer several days ahead of time. We will need to dilute the liquid methylamine with distilled water unless one intends to manufacture Ecstasy, in which case one will want to mix the pure methylamine with ethanol that has been frozen for a week or so and store it in the deep freeze. Methylamine/ethanol will not keep long as the methylamine will eventually boil away even in the freezer, but it is much safer than storing pure methylamine by itself. The methylamine/alcohol solution should be used within a week. Methylamine/water will keep well for years if kept cold.
One should be aware that this step can be very dangerous to life and liberty. Done improperly, this procedure can, and will, result in extremely stinky and poisonous methylamine gas filling the structure and pouring out into the street where everyone within a mile will smell it. The building will stink until it is torn down and the unlucky chemist who experiences this will also stink of it for a long time. One must be sober and paying close attention while performing this procedure.
To set up the equipment, one places a 10-liter heating mantle on the floor near the fume cabinet so any loose fumes will get sucked out. Place a clean triple-neck into the mantle. Mount a 75cm dual-surface reflux condenser in a tri- grip attached to a 36" lab stand. Attach the chiller lines with the input at the bottom and the output at the top and start up the chiller pump. The top of the reflux condenser should be within inches of a table or benchtop. Place the methylamine condenser on the bench and connect it to the condenser using a section of Tygon tubing and a pigtail that fits a 24/40 glass joint. Do not use rigid connections between the different mechanical assemblies. A pigtail can be made from a section of glass tubing and a 24/40 plug for those with some experience with glass. The exit end of our paint-can condenser is connected with Tygon tubing to a two-hole rubber stopper that fits snugly into a 24/40 glass joint. Inserted into the stopper are a 4" section of glass tubing and a 3" section. Attach the Tygon to the longer section. Cut a section of plastic tubing that leads from the short stopper tube to the inside of the fume cabinet. This is our vent. Next, carefully weigh three 2000ml RB flasks and write it down somewhere, identifying each flask with a piece of duct tape around the neck. It is important to be able to determine exactly how much methylamine one has made when it comes time to dilute it with water. Do not use markers on the flasks as they will disappear with alcohol-use duct tape on the neck. Next, place a 36" lab stand and ring (about 6-8") near the bench and our methylamine condenser. Use a 5-liter plastic bucket wrapped in insulation on the sides and place it at a height where the 2000ml receiver flask will sit in it nicely without requiring a long section of tubing between the condenser and the receiver. Hook the bucket handle over the top of the lab stand for safety, then attach a tri-grip around the neck of the 2000ml receiver. The receiver must be held rigidly in place or it will float and bob around in the bucket when we add alcohol and dry ice. The receiver must be kept at -75°C or the methylamine will boil away on us. Methylamine has a boiling point of -6°C, so this stuff will boil away even when it's kept in the deep freeze. We must also insure that our stopper will not pop out of the receiving flask by accident so one buys some Velcro strips at the variety store, slides a narrow strip between the glass tubes on the top surface of the stopper and uses another strip wrapped around the receiver neck, once the stopper is in place, to trap the ends and tie the entire works together. Tapes and other chemical-based bonding materials become fragile at -70°C. Lastly, charge both the paint can and bucket with methanol and slowly chill them down by adding chunks of dry ice, one at a time, until they no longer quickly boil away but remain solid at the bottom. The paint can should be about 75% full and the bucket filled to a point at least halfway up the receiving flask. We are now ready to rock and roll.
Using a wide-mouth funnel and a piece of wooden dowling, shove methylamine hydrochloride crystals from the freezer into the triple-neck until it is no more than 1/3 full. Attach the reflux condenser to the triple-neck and place the 500ml dropping funnel into one side neck. With the stopcock closed, charge it with 50% lye solution. Using a funnel quickly add 400g of dry sodium hydroxide to the main reaction vessel. Quickly plug the neck with a glass plug. As soon as the lye contacts the methylamine crystals it produces methylamine gas and sodium chloride(salt). After an initial burst, which one can watch run into the receiving vessel, the reaction will subside. Now is a good time to check and insure that all fittings are tight and there is no blockage in the condenser, which can be disastrous. Next, open the stopcock and allow the lye solution to stream in. It can be difficult to know when too much lye has been added because there is a delay before the reaction reaches a peak, so it is recommended that one proceed slowly, carefully watching the receiving flask for signs of too much liquid coming through. Methylamine is a clear liquid with a density of about 0.7. Keep the paint can and receiver bucket charged with dry ice and the chiller with water ice while lye solution is added at intervals. After an addition, wait until the condensation subsides before adding more lye. Eventually, adding more lye solution will not produce any more liquid methylamine and we must boil the remaining methylamine out of the solution of water, salt, methylamine, and dimethylamine. The remaining methylamine is now in a water solution, which we would prefer not to happen, but there must also be enough water to dissolve the salt and hold the dimethylamine in solution, so do not cut back on the water used in the lye solution. Turn the heating mantle to 50% and wait, keeping things cold as you do. Over the next two hours the remaining 60-70% of the methylamine will boil up through the reflux condenser, where the water and dimethylamines are condensed out, and then through the paint can and into the receiver. Watch the reflux condenser for signs of salt accumulating on the glass. This is an indication that there is not enough water in the solution, so let the boiling subside and quickly add a liter or so of distilled water before continuing the distillation. When no more methylamine comes over, or it is reduced to just a drop every several seconds, the batch is done. Turn off the heat and let things cool off for about 20 minutes until the boiling has totally subsided. During this period, detach the 2000ml receiving vessel and very, very carefully take it to the fume cabinet to be weighed. Keep in mind that if one should drop and spill the liquid methylamine, it will immediately boil into a gas, will probably kill the clumsy chemist, and will definitely make one's lab the center of attention for weeks to come. Don't drop it! Carry it in a frozen bucket(not a warm one). Once the methylamine has been weighed inside the fume cabinet, lower a clean thermometer into the liquid and leave it for several minutes until the temperature comes up to -30°C. This will let any liquid ammonia, which we do not want, boil away leaving only pure methylamine. Weigh it, subtract the weight of the flask, and divide the weight in grams by 0.7 to determine the volume. 1000g of methylamine will occupy about 1400ml. Very slowly and carefully add this first batch of methylamine to the 1-gal wine jug containing 2kg of crushed ice. There may be considerable fuming, in which case one should stop, stuff a rubber stopper(do not use glass) into the methylamine receiver and place the whole works into the freezer for a while.
Fortunately, one only has to perform this ugly chore once. Once we have a quantity of methylamine solution we know is 40%, one can simply add enough distilled water to accommodate the next batch and throw it into the deep freeze. The diluted methylamine solution will not freeze, thus allowing one to simply add methylamine liquid to the solution to bring it up to the required concentration. The formula is simple: equal volumes of distilled water and pure methylamine liquid will result in 40% methylamine solution. Depending upon the exact amount of crystals in the triple-neck, one should have between 900g and 1200g of pure methylamine liquid. For those manufacturing MDMA, add 100ml of pure methylamine to 250ml of ethanol that has been in the freezer for a week or so. This reduces the water content of the MDMA reductive amination, improving the yield.
Now that the first batch is complete, the chemist quickly sets up the other triple-neck and repeats the procedure. Once the chemist has some experience, he can do four batches in a single day if he starts early.

Yüklə 398 Kb.

Dostları ilə paylaş:
1   ...   13   14   15   16   17   18   19   20   21




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin