Liposomal vaccine formulations as prophylactic agents: design considerations for modern vaccines



Yüklə 1,05 Mb.
Pdf görüntüsü
səhifə29/31
tarix02.06.2023
ölçüsü1,05 Mb.
#123390
1   ...   23   24   25   26   27   28   29   30   31
10.1186 2Fs12951-017-0319-9

Herpesvirus-1 protein subunits into large unilamellar and multilamellar 
liposomes. Acta Veterinaria Brno. 1992;61:29–36.
44. Milicic A, Kaur R, Reyes-Sandoval A, Tang CK, Honeycutt J, Perrie Y, Hill 
AVS. Small cationic DDA:TDB liposomes as protein vaccine adjuvants 
obviate the need for TLR agonists in inducing cellular and humoral 
responses. PLoS ONE. 2012;7:10.
45. Joseph A, Itskovitz-Cooper N, Samira S, Flasterstein O, Eliyahu H, 
Simberg D, Goldwaser I, Barenholz Y, Kedar E. A new intranasal influenza 
vaccine based on a novel polycationic lipid—ceramide carbamoyl-
spermine (CCS)-I. Immunogenicity and efficacy studies in mice. Vaccine. 
2006;24:3990–4006.
46. Tseng LP, Chiou CJ, Deng MC, Lin MH, Pan RN, Huang YY, Liu DZ. Evalu-
ation of encapsulated newcastle disease virus liposomes using various 


Page 21 of 23
De Serrano and Burkhart  J Nanobiotechnol (2017) 15:83 
phospholipids administered to improve chicken humoral immunity. J 
Biomed Mater Res Part B Appl Biomater. 2009;91B:621–5.
47. Hilgers LAT, Snippe H. DDA as an immunological adjuvant. Res Immu-
nol. 1992;143:494–503.
48. Korsholm KS, Agger EM, Foged C, Christensen D, Dietrich J, Andersen 
CS, Geisler C, Andersen P. The adjuvant mechanism of cationic dime-
thyldioctadecylammonium liposomes. Immunology. 2007;121:216–26.
49. Yasuda T, Dancey GF, Kinsky SC. Immunogenicity of liposomal model 
membranes in mice—dependence on phospholipid composition. Proc 
Natl Acad Sci USA. 1977;74:1234–6.
50. Van Houte AJ, Snippe H, Schmitz MGJ, Willers JMN. Characterization of 
immunogenic properties of haptenated liposomal model membranes 
in mice 5 effect of membrane composition on humoral and cellular 
immunogenicity. Immunology. 1981;44:561–8.
51. Mazumdar T, Anam K, Ali N. Influence of phospholipid composition on 
the adjuvanticity and protective efficacy of liposome-encapsulated 
Leishmania donovani antigens. J Parasitol. 2005;91:269–74.
52. Kaur R, Henriksen-Lacey M, Wilkhu J, Devitt A, Christensen D, Perrie Y. 
Effect of incorporating cholesterol into DDA:TDB liposomal adjuvants 
on bilayer properties, biodistribution, and immune responses. Mol 
Pharm. 2014;11:197–207.
53. Hampl J, Franz J, Jordanova K, Stepanek J. Effects of phospholipid-
composition on adjuvant efficiency of liposomes. Acta Veterinaria Brno. 
1995;64:163–9.
54. Kummerow FA, Przybylski R, Wasowicz E. Changes in arterial membrane 
lipid composition may precede growth factor influence in the patho-
genesis of atherosclerosis. Artery. 1994;21:63–75.
55. Rao M, Matyas GR, Vancott TC, Birx DL, Alving CR. Immunostimula-
tory CpG motifs induce CTL responses to HIV type I oligomeric gp140 
envelope protein. Immunol Cell Biol. 2004;82:523–30.
56. Henriksen-Lacey M, Christensen D, Bramwell VW, Lindenstrom T, Agger 
EM, Andersen P, Perrie Y. Comparison of the depot effect and immuno-
genicity of liposomes based on dimethyldioctadecylammonium (DDA), 
3 beta N
ʹ,Nʹ-dimethylaminoethane)carbomyl cholesterol (DC-Chol), 
and 1,2-dioleoyl-3-trimethylammonium propane (DOTAP): prolonged 
liposome retention mediates stronger Th1 responses. Mol Pharm. 
2011;8:153–61.
57. Andersen P, Doherty TM. The success and failure of BCG—implications 
for a novel tuberculosis vaccine. Nat Rev Microbiol. 2005;3:656–62.
58. Fine PEM. Variation in protection by BCG—implications of and for 
heterologous immunity. Lancet. 1995;346:1339–45.
59. Abhyankar MM, Noor Z, Tomai MA, Elyecrog J, Fox CB, Petri WA Jr. Nano-
formulation of synergistic TLR ligands to enhance vaccination against 
Entamoeba histolytica. Vaccine. 2017;35:916–22.
60. Mohammed AR, Bramwell VW, Kirby DJ, McNeil SE, Perrie Y. Increased 
potential of a cationic liposome-based delivery system: enhancing sta-
bility and sustained immunological activity in pre-clinical development. 
Eur J Pharm Biopharm. 2010;76:404–12.
61. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu CZ, Middelberg APJ. 
Nanoparticle vaccines. Vaccine. 2014;32:327–37.
62. Lonez C, Vandenbranden M, Ruysschaert JM. Cationic liposomal lipids: 
from gene carriers to cell signaling. Prog Lipid Res. 2008;47:340–7.
63. Aramaki Y, Tomizawa H, Hara T, Yachi K, Kikuchi H, Tsuchiya S. Stability 
of liposomes in-vitro and their uptake by rat peyer patches following 
oral-administration. Pharm Res. 1993;10:1228–31.
64. CarmonaRibeiro AM, Ortis F, Schumacher RI, Armelin MCS. Interactions 
between cationic vesicles and cultured mammalian cells. Langmuir. 
1997;13:2215–8.
65. Karathanasis E, Geigerman CM, Parkos CA, Chan L, Bellamkonda RV, Jaye 
DL. Selective targeting of nanocarriers to neutrophils and monocytes. 
Ann Biomed Eng. 2009;37:1984–92.
66. Johansen PT, Zucker D, Parhamifar L, Pourhassan H, Madsen DV, Hen-
riksen JR, Gad M, Barberis A, Maj R, Andresen TL, Jensent SS. Monocyte 
targeting and activation by cationic liposomes formulated with a TLR7 
agonist. Expert Opin Drug Deliv. 2015;12:1045–58.
67. Tanaka Y, Taneichi M, Kasai M, Kakiuchi T, Uchida T. Liposome-coupled 
antigens are internalized by antigen-presenting cells via pinocytosis 
and cross-presented to CD8(+) T cells. PLoS ONE. 2010;5:e15225.
68. Owais M, Gupta CM. Liposome-mediated cytosolic delivery of macro-
molecules and its possible use in vaccine development. Eur J Biochem. 
2000;267:3946–56.
69. Huong TM, Harashima H, Kiwada H. Complement dependent and 
independent liposome uptake by peritoneal macrophages: cholesterol 
content dependency. Biol Pharm Bull. 1998;21:969–73.
70. Song X, Lin Q, Guo L, Fu Y, Han J, Ke H, Sun X, Gong T, Zhang Z. 
Rifampicin loaded mannosylated cationic nanostructured lipid carriers 
for alveolar macrophage-specific delivery. Pharm Res. 2015;32:1741–51.
71. White KL, Rades T, Furneaux RH, Tyler PC, Hook S. Mannosylated 
liposomes as antigen delivery vehicles for targeting to dendritic cells. J 
Pharm Pharmacol. 2006;58:729–37.
72. Varypataki EM, van der Maaden K, Bouwstra J, Ossendorp F, Jiskoot W. 
cationic liposomes loaded with a synthetic long peptide and poly(I:C): 
a defined adjuvanted vaccine for induction of antigen-specific T cell 
cytotoxicity. Aaps J. 2015;17:216–26.
73. Tada R, Hidaka A, Iwase N, Takahashi S, Yamakita Y, Iwata T, Muto S, Sato 
E, Takayama N, Honjo E, et al. Intranasal immunization with DOTAP 
cationic liposomes combined with DC-cholesterol induces potent 
antigen-specific mucosal and systemic immune responses in mice. 
PLoS ONE. 2015;10:e0139785.
74. Meiklejohn G, Simpson TW, Stacy IB. experimental infection of domestic 
animals with Japanese B-encephalitis virus. Proc Soc Exp Biol Med. 
1947;65:359–64.
75. Niklasson B, Hakansson C, Lowhagen GB, Jonsson R. Oral mucosal 
lesions associated with HIV-infection. Swed Dent J. 1986;10:258.
76. Greenberg HB, Pollard RB, Lutwick LI, Gregory PB, Robinson WS, 
Merigan TC. Effect of human leukocyte interferon on hepatitis B 
virus-infection in patients with chronic active hepatitis. N Engl J Med. 
1976;295:517–22.
77. Allard HA. Some properties of the virus of the mosaic disease of 
tobacco. J Agric Res. 1916;6:649–74.
78. Brown M, Reed S, Levy JA, Busch M, McKerrow JH. Detection of HIV-1 in 
entamoeba-histolytica without evidence of transmission to human-
cells. Aids. 1991;5:93–6.
79. Wang AL, Wang CC. Viruses of parasitic protozoa. Parasitol Today. 
1991;7:76–80.
80. Applemans R, Wagemans J. The bacteriophages of different families. C 
R Seances Soc Biol Fil. 1922;86:738–9.
81. Maisin J. The bacteriophages. Arch Int Pharmacodyn Ther. 
1922;26:215–45.
82. Piroth L, Wittkop L, Lacombe K, Rosenthal E, Gilbert C, Miailhes P, Carrieri 
P, Chas J, Poizot-Martin I, Gervais A, et al. Efficacy and safety of direct-
acting antiviral regimens in HIV/HCV-co-infected patients—French 
ANRS CO13 HEPAVIH cohort. J Hepatol. 2017;67:23–31.
83. Sil A, Ravi MD, Patnaik BN, Dhingra MS, Dupuy M, Gandhi DJ, Dhaded 
SM, Dubey AP, Kundu R, Lalwani SK, et al. Effect of prophylactic or 
therapeutic administration of paracetamol on immune response 
to DTwP-HepB-Hib combination vaccine in Indian infants. Vaccine. 
2017;35:2999–3006.
84. Brunel F, Darbouret A, Ronco J. Cationic lipid DC-Chol induces an 
improved and balanced immunity able to overcome the unresponsive-
ness to the hepatitis B vaccine. Vaccine. 1999;17:2192–203.
85. Mahor S, Rawat A, Dubey PK, Gupta PN, Khatri K, Goyal AK, Vyas SP. 
Cationic transfersomes based topical genetic vaccine against hepatitis 
B. Int J Pharm. 2007;340:13–9.
86. Blom RAM, Erni ST, Krempaska K, Schaerer O, van Dijk RM, Amacker M, 
Moser C, Hall SRR, von Garnier C, Blank F. A triple co-culture model of 
the human respiratory tract to study immune-modulatory effects of 
liposomes and virosomes. PLoS ONE. 2016;11:e0163539.
87. Stein RT, Bont LJ, Zar H, Polack FP, Park C, Claxton A, Borok G, Butylkova 
Y, Wegzyn C. Respiratory syncytial virus hospitalization and mortality: 
systematic review and meta-analysis. Pediatr Pulmonol. 2017;52:556–69.
88. Klinguer C, Beck A, De-Lys P, Bussat MC, Blaecke A, Derouet F, Bonnefoy 
JY, Nguyen TN, Corvaia N, Velin D. Lipophilic quaternary ammonium salt 
acts as a mucosal adjuvant when co-administered by the nasal route 
with vaccine antigens. Vaccine. 2001;19:4236–44.
89. Staats HF, McGhee JR. Application of basic principles of mucosal immu-
nity to vaccine development. In: Kryono H, Ogra PL, McGhee JR (eds) 
Mucosal Vaccines. San Diego: Academic Press; 1996. p. 17–39. ISBN: 
9780124105805.
90. Goldberg JB, Pier GB. Pseudomonas aeruginosa lipopolysaccharides and 
pathogenesis. Trends Microbiol. 1996;4:490–4.


Page 22 of 23
De Serrano and Burkhart  J Nanobiotechnol (2017) 15:83 
91. Ketley JM. Pathogenesis of enteric infection by Campylobacter. Micro-
biol Uk. 1997;143:5–21.
92. Naumovska E, Ludwanowski S, Hersch N, Braun T, Merkel R, Hoffmann 
B, Csiszar A. Plasma membrane functionalization using highly fusogenic 
immune activator liposomes. Acta Biomater. 2014;10:1403–11.
93. Nakanishi T, Kunisawa J, Hayashi A, Tsutsumi Y, Kubo K, Nakagawa S, 
Nakanishi M, Tanaka K, Mayumi T. Positively charged liposome functions 
as an efficient immunoadjuvant in inducing cell-mediated immune 
response to soluble proteins. J Control Release. 1999;61:233–40.
94. Foged C, Arigita C, Sundblad A, Jiskoot W, Storm G, Frokjaer S. Interac-
tion of dendritic cells with antigen-containing liposomes: effect of 
bilayer composition. Vaccine. 2004;22:1903–13.
95. Gall D. The adjuvant activity of aliphatic nitrogenous bases. Immunol-
ogy. 1966;11:369–86.
96. Jin SE, Kim CK. Long-term stable cationic solid lipid nanoparticles 
for the enhanced intracellular delivery of SMAD3 antisense oligo-
nucleotides in activated murine macrophages. J Pharm Pharm Sci. 
2012;15:467–82.
97. Romøren K, Thu BJ, Bols NC, Evensen Ø. Transfection efficiency and 
cytotoxicity of cationic liposomes in salmonid cell lines of hepatocyte 
and macrophage origin. Biochim Biophys Acta. 2004;1663:127–34.
98. Sakurai F, Inoue R, Nishino Y, Okuda A, Matsumoto O, Taga T, Yamashita 
F, Takakura Y, Hashida M. Effect of DNA/liposome mixing ratio on the 
physicochemical characteristics, cellular uptake and intracellular traf-
ficking of plasmid DNA/cationic liposome complexes and subsequent 
gene expression. J Control Release. 2000;66:255–69.
99. Kurosaki T, Kitahara T, Fumoto S, Nishida K, Yamamoto K, Nakagawa H, 
Kodama Y, Higuchi N, Nakamura T, Sasaki H. Chondroitin sulfate capsule 
system for efficient and secure gene delivery. J Pharm Pharm Sci. 
2010;13:351–61.
100. Kurosaki T, Kitahara T, Teshima M, Nishida K, Nakamura J, Nakashima M, 
To H, Hukuchi H, Hamamoto T, Sasaki H. Exploitation of De Novo helper-
lipids for effective gene delivery. J Pharm Pharm Sci. 2008;11:56–67.
101. Lehrnbecher T, Kalkum M, Champer J, Tramsen L, Schmidt S, Klingebiel 
T. Immunotherapy in invasive fungal infection—focus on invasive 
aspergillosis. Curr Pharm Des. 2013;19:3689–712.
102. Mathew BP, Nath M. Recent approaches to antifungal therapy for inva-
sive mycoses. ChemMedChem. 2009;4:310–23.
103. Jensen RH. Resistance in human pathogenic yeasts and filamentous 
fungi: prevalence, underlying molecular mechanisms and link to 
the use of antifungals in humans and the environment. Dan Med J. 
2016;63(10). pii: B5288.
104. Hector RF, Rutherford GW, Tsang CA, Erhart LM, McCotter O, Anderson 
SM, Komatsu K, Tabnak F, Vugia DJ, Yang Y, Galgiani JN. The public 
health impact of Coccidioidomycosis in Arizona and California. Int J 
Environ Res Public Health. 2011;8:1150–73.
105. Krishnan-Natesan S, Chandrasekar PH. Current and future thera-
peutic options in the management of invasive aspergillosis. Drugs. 
2008;68:265–82.
106. Han YM, Cutler JE. Antibody-response that protects against dissemi-
nated candidiasis. Infect Immun. 1995;63:2714–9.
107. Han YM, Morrison RP, Cutler JE. A vaccine and monoclonal antibodies 
that enhance mouse resistance to Candida albicans vaginal infection. 
Infect Immun. 1998;66:5771–6.
108. Eckstein M, Barenholz Y, Bar LK, Segal E. Liposomes containing Candida 

Yüklə 1,05 Mb.

Dostları ilə paylaş:
1   ...   23   24   25   26   27   28   29   30   31




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin