Matritsalar va ular ustida amallar



Yüklə 72,22 Kb.
səhifə1/3
tarix18.03.2023
ölçüsü72,22 Kb.
#88604
  1   2   3
Matritsalar va ular ustida amallar


Matritsalar va ular ustida amallar
Matritsa bir qator matematik va iqtisodiy masalalarni yechishda juda ko‘p qo‘llaniladigan tushuncha bo‘lib, uning yordamida bu masalalar va ularning yechimlarini sodda hamda ixcham ko‘rinishda ifodalanadi.
Matritsa ta’rifi: m ta satr va n ta ustundan iborat to‘g‘ri to‘rtburchak shaklidagi mn ta sondan tashkil topgan jadval m×n tartibli matritsa, uni tashkil etgan sonlar esa matritsaning elementlari dеb ataladi.
Matritsalar A,B,C,… kabi bosh harflar bilan, ularning i-satr va j-ustunida joylashgan elementlari esa odatda аіј , bіј , сіј kabi mos kichik harflar bilan belgilanadi. Masalan,

А=

matritsa 2×3 tartibli, ya’ni 2 ta satr va 3 ta ustun ko‘rinishidagi 2·3=6 ta sondan tashkil topgan. Uning 1-satr elementlari а11 =1, а12 = –3, а13 =1.2 va 2-satr

elementlari а21 =0, а22 =7.5, а23 = –1 sonlardan iborat. Bu matritsaning 1-ustuni а11 =1 va а21 =0, 2-ustuni а12 = –3 va а22 = 7,5, 3-ustuni esa а13 =1.2 va а23 = –1 elementlardan tuzilgan.


Agar biror A matritsaning tartibini ko‘rsatishga ehtiyoj bo‘lsa, u Аm×n ko‘rinishda yoziladi va umumiy holda

yoki qisqacha Аm×n =( аіј ) ko‘rinishda ifodalanadi.
Аmхn matritsada m = n  1 bo‘lsa, u kvadrat matritsa, m n (m1, n1) bo‘lsa to‘g‘ri burchakli matritsa , m=1, n1 holda satr matritsa va m1, n=1 bo‘lganda ustun matritsa deb ataladi.
Аnхn kvadrat matritsa qisqacha Аn kabi belgilanadi va n-tartibli kvadrat matritsa deyiladi.
Masalan, xalq xo‘jaligining n ta tarmoqlari orasidagi o‘zaro mahsulot ayirboshlash Аn =( аіј ) kvadrat matritsa yordamida ifodalanadi. Bunda аіј (i,j=1,2, … , n va ij) i-tarmoqda ishlab chiqarilgan mahsulotning j-tarmoq uchun mo‘ljallangan miqdorini, аіi (i=1,2, … , n) esa i-tarmoqning o‘zi ishlab chiqargan mahsulotga ehtiyojini bildiradi.
Shuni ta’kidlab o‘tish kerakki, m=1 va n=1 bo‘lganda А1×1 matritsa bitta sonni ifodalaydi va shu sababli ma’lum bir ma’noda matritsa son tushunchasini umumlashtiradi.
A va B matritsalar bir xil tartibli va ularning mos elеmеntlari o‘zaro tеng bo‘lsa, ya’ni аij = bij shart bajarilsa, ular tеng matritsalar dir
A va B matritsalarning tengligi A=B yoki ( аіј)= (bіј) ko‘rinishda belgilanadi. Masalan, ixtiyoriy a≠0 soni uchun

matritsalar o‘zaro teng, ya’ni A = B bo‘ladi.
А={аіј} matritsada i=j bo‘lgan аіі elеmеntlar diagonal elеmеntlar
Masalan, yuqorida ko‘rilgan А2×3 matritsaning diagonal elementlari а11 =1 va а22 =7.5 bo‘ladi.

Yüklə 72,22 Kb.

Dostları ilə paylaş:
  1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin