Механика кириш


-§. YORUG’LIK DIFRAKSIYASI



Yüklə 0,84 Mb.
səhifə36/47
tarix08.06.2022
ölçüsü0,84 Mb.
#60908
1   ...   32   33   34   35   36   37   38   39   ...   47
Механика кириш

3-§. YORUG’LIK DIFRAKSIYASI

YOrug’likni fazoda tarqalishini kuzatib yorug’lik to’g’ri chiziq bo’ylab tarqaladi degan xulosaga kelamiz. Hakikatdan ham, biror teshikdan yorug’lik o’tsa, u uzun nur konusini hosil qiladi. Agar shu teshikni yana kichraytirsak, u holda yorug’lik teshikdan sfera bo’ylab tarqaluvchan bo’ladi. Bu hodisani birinchi bo’lib italyan olimi Grimaldi kuzatgan va uni yorug’lik difraksiyasi deb atagan. Umuman, yorug’lik difraksiyasi deb yorug’likni tor teshiklardan va to’siq chetidan o’tganda to’g’ri chiziqli tarqalishining bo’zilishiga aytiladi. Gyuygens yorug’likni tarqalish jarayonini tushuntirish uchun bir prinsipni bayon etdi. Bu prinsipni ma’nosi shunday: yorug’lik to’lqini kelib tebratgan har bir nuqta o’z navbatida manba bo’lib elementar yorug’lik to’lqinlarini tarqatadi. Gyuygens prinsipini kamchiligi shundaki, elementar to’lqinlarni qo’shganda ularni fazalarini hisobga olmaydi, holbuki bu to’lqinlarning fazalari har xil bo’ladi. Bu kamchilikni Frenel to’ldirdi va elementar to’lqinlarni fazalarini hisobga oldi. Natijada Gyuygens-Frenel prinsipi vujudga keldi, uni ma’nosi shunday: chegaralangan yorug’lik to’lqinlari fronti tarqalganda hamma nuqtalardan chiqayotgan elementar to’lqinlar interferensiya natijasida bir-biri bilan qo’shilishib ketgan fazoning qismida qorong’ulik kuzatiladi.


Frenel yorug’lik difraksiyasini tushuntirish uchun o’tayotgan to’lqin frontini elementar to’lqinlar manbai bo’lgan zonalarga ajratdi va ularning biror nuqtadagi ta’sirini ko’rib chiqdi. Optikada bu zonalarni Frenel zonalari deb ataladi. Frenel shu usul bilan yorug’likni to’g’ri chiziq bo’ylab tarqalishini ham tushuntirdi. Difraksion hodisalar o’z xarakteriga qarab ikki sinfga bo’linadi. Birinchi sinfga kuzatuvchi nuqta ekran ( to’siq )dan ma’lum masofada joylashgan holdagi difraksion hodisalar kiradi. Bu xil difraksion hodisalar birinchi marta Frenel tomonidan o’rganilgan bo’lgani uchun Frenel difraksiyasi deyiladi. Ikkinchi sinfga ekran (to’siq) kuzatuvchi nuqtadan cheksiz masofada bo’lgan hol, ya’ni parallel nurlardagi difraksion hodisalar kiradi. Bu xil difraksion hodisalarni birinchi marta Fraungofer o’rgangan. SHu sababli bunday difraksiyalarni Fraungofer difraksiyasi deyiladi.
Frenel difraksiyasini doiraviy teshikdan yorug’lik o’tganda ko’ramiz. Doiraviy teshikni Frenel zonalariga bo’lamiz. Masalan, doiraviy teshikda 3 ta zona joylashgan. A nuqtada difraksion manzarani kuzatamiz. Bunda umumiy qoida shunday: agar doiraviy teshikda juft zonalar joylashsa, A nuqtada ( markazda ) qorong’ulik bo’ladi. Agar doiraviy teshikda toq zonalar joylashsa, A nuqtada ( markazda ) yorug’lik bo’ladi. Biz ko’rayotgan holda doiraviy teshikda 3ta zona joylashgani uchun A nuqtada yorug’lik bo’ladi.
Difraksiya hodisasiga asoslanib maxsus asboblar yasalgan. SHunday qurilmalardan birini difraksion panjara deyiladi. Difraksion panjara deb, bir-biridan teng masofalarda turgan ko’p tirqishlardan tuzilgan asbobga aytiladi. Difraksion panjaradagi parallel joylashgan tirqishlardan yorug’lik o’tganda Fraungofer difraksiyasi kuzatiladi. Difraksion panjaradagi bitta tirqishning eni b bo’lsa, ikki tirqish orasidagi to’siq eni a bo’lsa, ularning yig’indisiga difraksion panjara doimiysi yoki davri d deyiladi. Tirqishlar soni N va panjara doimiysi d o’zaro shunday bog’langan:


(3.1)

Ikki qo’shni tirqishdan o’tgan yorug’lik to’lqinlarining o’zaro yo’l farqi




(3.2)

ga teng bo’lib, bu yerda - difraksiya burchagi .


Difraksion panjara uchun yorug’likning kuchayishi, ya’ni maksimum sharti quyidagicha bo’ladi:


( ) (3.3)


Difraksion panjara uchun minimumlar sharti :


( ) (3.4)

(3.3) va (3.4) ifodalardagi lar mos ravishda maksimum va minimumlar tartibi. Difraksion panjara hosil qilgan manzarada yana qo’shimcha minimumlar va ular orasida ikkilamchi maksimumlar ham kuzatiladi.



Yüklə 0,84 Mb.

Dostları ilə paylaş:
1   ...   32   33   34   35   36   37   38   39   ...   47




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin