Метод Ньютона для решения нелинейных уравнений


Обзор существующих методов решения нелинейных уравнений



Yüklə 222,59 Kb.
səhifə2/3
tarix27.01.2020
ölçüsü222,59 Kb.
#30315
növüКурсовая
1   2   3
bestreferat-258487


1.1 Обзор существующих методов решения нелинейных уравнений

Существует много различных методов решения нелинейных уравнений, некоторые из них представлены ниже:

1)Метод итераций. При решении нелинейного уравнения методом итераций воспользуемся записью уравнения в виде x=f(x). Задаются начальное значение аргумента x0 и точность ε. Первое приближение решения x1 находим из выражения x1=f(x0), второе - x2=f(x1) и т.д. В общем случае i+1 приближение найдем по формуле xi+1 =f(xi). Указанную процедуру повторяем пока |f(xi)|>ε. Условие сходимости метода итераций |f'(x)|<1.

2)Метод Ньютона. При решении нелинейного уравнения методом Ньтона задаются начальное значение аргумента x0 и точность ε. Затем в точке(x0,F(x0)) проводим касательную к графику F(x) и определяем точку пересечения касательной с осью абсцисс x1. В точке (x1,F(x1)) снова строим касательную, находим следующее приближение искомого решения x2 и т.д. Указанную процедуру повторяем пока |F(xi)| > ε. Для определения точки пересечения (i+1) касательной с осью абсцисс воспользуемся следующей формулой xi+1=xi-F(xi)\ F’(xi). Условие сходимости метода касательных F(x0)∙F''(x)>0, и др.

3). Метод дихотомии. Методика решения сводится к постепенному делению начального интервала неопределённости пополам по формуле Сккк/2.

Для того чтобы выбрать из двух получившихся отрезков необходимый, надо находить значение функции на концах получившихся отрезков и рассматривать тот на котором функция будет менять свой знак, то есть должно выполняться условие f (ак)* f (вк)<0.

Процесс деления отрезка проводится до тех пор, пока длина текущего интервала неопределённости не будет меньше заданной точности, то есть

вк – ак < E. Тогда в качестве приближенного решения уравнения будет точка, соответствующая середине интервала неопределённости.

4). Метод хорд. Идея метода состоит в том, что на отрезке [a,b] строится хорда стягивающая концы дуги графика функции y=f(x), а точка c, пересечения хорды с осью абсцисс, считается приближенным значением корня
c = a - (f(a)Ч (a-b)) / (f(a) - f(b)),

c = b - (f(b)Ч (a-b)) / (f(a) - f(b)).


Следующее приближение ищется на интервале [a,c] или [c,b] в зависимости от знаков значений функции в точках a,b,c
x* О [c,b] , если f(с)Ч f(а) > 0 ;

x* О [a,c] , если f(c)Ч f(b) < 0 .

Если f'(x) не меняет знак на [a,b], то обозначая c=x1 и считая начальным приближением a или b получим итерационные формулы метода хорд с закрепленной правой или левой точкой.
x0=a, xi+1 = xi - f(xi)(b-xi) / (f(b)-f(xi), при f '(x)Ч f "(x) > 0 ;

x0=b, xi+1 = xi - f(xi)(xi-a) / (f(xi)-f(a), при f '(x)Ч f "(x) < 0 .


Сходимость метода хорд линейная.



Yüklə 222,59 Kb.

Dostları ilə paylaş:
1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin