Module General principles of metabolism Test questions in text form



Yüklə 0,52 Mb.
Pdf görüntüsü
səhifə4/4
tarix01.11.2022
ölçüsü0,52 Mb.
#67053
1   2   3   4
biochemistry shii

Test questions for figures 
1. Coenzyme S-adenosylmethionine, shown in figure 52, participates in many reactions of 
biosynthesis as a donator of:
A. Phosphoryl group
B. Acetyl group
C. Hydroxyl group
D. * Methyl group
E. Carboxyl group
2. Compound shown in figure 53 is a metabolite coenzyme which can donate phosphoryl 
group in biochemical reactions. This compound is:
A. NADH
B. FADH2
C. TPP
D. * ATP
E. HS-CoA
3. Compound shown in figure 54 is the coenzyme for oxido-reductases. This is:
A. * NADH
B. FADH2
C. TPP
D. ATP
E. HS-CoA
4. Compound shown in figure 55 is the coenzyme for oxido-reductases. This is:
A. NADH
B. * FADH2
C. TPP
D. ATP
E. HS-CoA
5. Compound shown in figure 56 is the coenzyme for pyruvate dehydrogenase and 
transketolase. This is:
A. NADH
B. FADH2
C. * TPP
D. ATP
E. HS-CoA
6. Electrons flow through the ETC components shown in figure 76 spontaneously in the 
direction of increasing redox potentials. What is the reduction potential of the component 
replaced with digit 5?
A. -0.32
B. -0.82
C. * +0.82
D. 0.00
E. +0.32
7. Equation shown in the figure 68 represents:
A. * Theory of intermediate enzyme-substrate complex
B. Induced-fit theory of enzyme and substrate
C. Lock-and-key theory of enzyme and substrate
D. Koshland theory
E. Fisher theory
8. ETC consists of several complexes. What is the name of complex shown in figure 77?
A. * Complex I (NADH-ubiquinone oxidoreductase)
B. Complex II (succinate-ubiquinone oxidoreductase)


C. Complex III (ubiquinone-cytochrome c oxidoreductase)
D. Complex IV (cytochrome c oxidase)
E. Complex V (NADH-cytochrome c oxidoreductase)
9. ETC consists of several complexes. What is the name of complex shown in figure 78?
A. Complex I (NADH-ubiquinone oxidoreductase)
B. * Complex II (succinate-ubiquinone oxidoreductase)
C. Complex III (ubiquinone-cytochrome c oxidoreductase)
D. Complex IV (cytochrome c oxidase)
E. Complex V (NADH-cytochrome c oxidoreductase)
10. ETC consists of several complexes. What is the name of complex shown in figure 79?
A. Complex I (NADH-ubiquinone oxidoreductase)
B. Complex II (succinate-ubiquinone oxidoreductase)
C. * Complex III (ubiquinone-cytochrome c oxidoreductase)
D. Complex IV (cytochrome c oxidase)
E. Complex V (NADH-cytochrome c oxidoreductase)
11. ETC consists of several complexes. What is the name of complex shown in figure 80?
A. Complex I (NADH-ubiquinone oxidoreductase)
B. Complex II (succinate-ubiquinone oxidoreductase)
C. Complex III (ubiquinone-cytochrome c oxidoreductase)
D. * Complex IV (cytochrome c oxidase)
E. Complex V (NADH-cytochrome c oxidoreductase)
12. Formulate the phenomenon shown in figure 81.
A. The pumping of protons into the intermembrane space results in the electrons 
flow through complexes of ETC.
B. * As electrons flow through complexes of ETC, protons are translocated from 
matrix into the intermembrane space.
C. Electron transport through complexes of ETC is inhibited by ATP synthesis.
D. Electron transport and ATP synthesis are coupled by a OH- gradient across the 
inner mitochondrial membrane.
E. The pumping of protons into the matrix results in the electrons flow through 
complexes of ETC.
13. How many protons are pumped out of the matrix when two electrons flow through the 
ETC complex shown in the figure 77?
A. 1
B. 2
C. 3
D. * 4
E. 5
14. How many protons are pumped out of the matrix when two electrons flow through the 
ETC complex shown in the figure 78?
A. 1
B. 2
C. 3
D. 4
E. * 0
15. How many protons are pumped out of the matrix when two electrons flow through the 
ETC complex shown in the figure 79?
A. 1
B. 2
C. 3
D. * 4
E. 0


16. How many protons are pumped out of the matrix when two electrons flow through the 
ETC complex shown in the figure 80?
A. 1
B. * 2
C. 3
D. 4
E. 0
17. How many protons are pumped out of the matrix when two electrons flow through the 
ETC shown in the figure 80?
A. * 10
B. 3
C. 4
D. 15
E. 0
18. In electron transport chain shown in figure 76 some components are missing. Which 
carrier is replaced with digit 1?
A. * FMN
B. FAD
C. CoQ
D. Cytochrom c
E. Fe-S clusters
19. In electron transport chain shown in figure 76 some components are missing. Which 
carrier is replaced with digit 3?
A. FMN
B. FAD
C. * CoQ
D. Cytochrom c
E. Fe-S clusters
20. In electron transport chain shown in figure 76 some components are missing. Which 
carrier is replaced with digit 4?
A. FMN
B. FAD
C. CoQ
D. * Cytochrom c
E. Fe-S clusters
21. In electron transport chain shown in figure 76 some components are missing. Which 
component is replaced with digit 5?
A. FMN
B. FAD
C. * O2
D. Cytochrom c
E. Fe-S clusters
22. In electron transport chain shown in figure 79 some components are missing. Which 
carrier is replaced with digit 2?
A. FMN
B. * FAD
C. CoQ
D. Cytochrom c
E. Fe-S clusters
23. In figure 61 the example of reaction is shown.
A. Oxidation-reduction
B. Hydrolysis


C. * Group transfer
D. Synthesis
E. Isomerization
24. In figure 62 the example of reaction is shown.
A. Oxidation-reduction
B. * Hydrolysis
C. Group transfer
D. Synthesis
E. Isomerization
25. In figure 63 the example of reaction is shown.
A. Oxidation-reduction
B. Hydrolysis
C. Group transfer
D. * Lysis of substrate
E. Isomerization
26. In figure 64 the example of reaction is shown.
A. Oxidation-reduction
B. Hydrolysis
C. Group transfer
D. Lysis of substrate
E. * Isomerization
27. In figure 65 the example of reaction is shown.
A. Oxidation-reduction
B. Hydrolysis
C. Group transfer
D. * Ligation
E. Isomerization
28. In the figure 71 activator binds noncovalently to specific site and regulate enzyme 
activity via conformational changes. This activator can be also called:
A. * Allosteric modulator
B. Covalent modulator
C. Proteolytic factor
D. Negative modulator
E. Covalent factor
29. In the figure 72 the reaction of covalent modification of enzyme is shown. Such 
modification is called:
A. Acetylation
B. Methylation
C. Sulfation
D. Carboxylation
E. * Phosphorylation
30. In the figure 73 the scheme of enzyme is shown.
A. Allosteric regulation
B. * Covalent modification
C. Proteolytic cleavage
D. Negative feedback regulation
E. Positive feedback regulation
31. In the figure 74 the scheme of enzyme regulation is presented. Such mechanism is called:
A. * Feedback inhibition
B. Feedback activation
C. Proteolytic activation
D. Positive feedback


E. Allosteric regulation
32. In the figure 78 the reaction of enzyme is shown.
A. Allosteric regulation
B. Covalent modification
C. * Proteolytic cleavage
D. Negative feedback regulation
E. Positive feedback regulation
33. In which reactions in biological pathway shown in figure 92 NADH are formed?
A. 1, 3, 6
B. 4, 5, 8
C. 2, 4, 8
D. 3, 5, 7
E. * 2, 3, 7
34. Membrane of which organelle is shown in figure 81?
A. Nucleus
B. * Mitochondria
C. Endoplasmic reticulum
D. Cell membrane
E. Lysosome
35. NAD in the reaction shown in figure 60 plays the role of:
A. Donor of protons
B. Donor of electrons
C. Acceptor of proton
D. Acceptor of electrons
E. * Acceptor of protons and electrons
36. Name the enzyme catalyzing the reaction shown in figure 91.
A. Protein kinase
B. * Pyruvate dehydrogenase
C. Pyruvate carboxylase
D. Pyruvate corboxykinase
E. Acetyl CoA dehydrogenase
37. Name the enzyme which is replaced with question-mark in figure 89.
A. Dehydrogenase
B. * Protein kinase
C. Adenylatcyclase
D. ATP-ase
E. Aldolase
38. Name the product of reaction depicted in figure 91.
A. Citrate
B. * Acetyl CoA
C. Oxaloacetate
D. Phosphoenol pyruvate
E. Isocitrate
39. The complex enzyme is shown in the figure 49. The nonprotein part of this enzyme is 
called:
A. Coenzyme
B. Cofactor
C. * Prosthetic group
D. Apoenzyme
E. Holoenzyme
40. The curve reflecting the enzyme activity vs pH is shown in figure 58. Which enzyme 
most probably is it?


A. Amilase
B. Chemotrypsin
C. Trypsin
D. * Pepsin
E. Lipase
41. The curve shown in figure 66 is typical for description of:
A. The effect of temperature on enzyme activity
B. The effect of pH on enzyme activity
C. * The effect of substrate concentration on the rate of reaction
D. The effect of enzyme concentration on the rate of reaction
E. The effect of pH on the rate of reaction
42. The curve shown in figure 67 is typical for description of:
A. The effect of temperature on enzyme activity
B. The effect of pH on enzyme activity
C. The effect of substrate concentration on the rate of reaction
D. * The effect of enzyme concentration on the rate of reaction
E. The effect of pH on the rate of reaction
43. The enzyme catalyzing the oxidation-reduction reaction shown in figure 60 belong to the 
following subclass:
A. Oxidases
B. Peroxidases
C. * Dehydrogenases
D. Peptidases
E. Esterases
44. The enzyme catalyzing the reaction of hydrolysis shown in figure 62 belong to the 
following subclass:
A. * Phosphatases
B. Peroxidases
C. Dehydrogenases
D. Peptidases
E. Esterases
45. The enzyme shown in figure 49 can be characterized as:
A. Simple enzyme
B. * Metalloenzyme
C. Apoenzyme
D. Isoenzyme
E. Multifunctional enzyme
46. The following enzymes cannot function without the coenzyme shown in figure 54:
A. Peroxidases
B. Esterases
C. Glucosidases
D. * Dehydrogenases
E. Peptidases
47. The following enzymes cannot function without the coenzyme shown in figure 55:
A. Peroxidases
B. Esterases
C. Glucosidases
D. * Dehydrogenases
E. Peptidases
48. The following enzymes cannot function without the coenzyme shown in figure 56:
A. Peroxidase
B. Catalase


C. Glucosidase
D. * Pyruvate dehydrogenase
E. Peptidase
49. The formula shown in figure 68 is called:
A. * Michaelis-Menten equation
B. Krebs equation
C. Horbachevsky equation
D. Mitchell equation
E. Kori equation
50. The fragment of the enzyme structure is shown in the figure 49. Such enzyme can be 
characterized as:
A. Simple enzyme
B. * Complex enzyme
C. Coenzyme
D. Isoenzyme
E. Multifunctional enzyme
51. The mechanism of active site-substrate interaction shown in figure 50 is called:
A. Induced-fit model
B. Chemiosmotic model
C. Allosteric model
D. * Lock and key model
E. Covalent binding model
52. The mechanism of active site-substrate interaction shown on figure 51 is called:
A. * Induced-fit model
B. Chemiosmotic model
C. Allosteric model
D. Lock and key model
E. Covalent binding model
53. The mechanism of enzyme activation presented in figure 75 is called:
A. Feedback activation
B. Positive activation
C. * Proteolytic activation
D. Covalent activation
E. Allosteric activation
54. The precursor for coenzyme FADH2 shown in figure 7 is:
A. Thiamin
B. * Riboflavin
C. Lipoic acid
D. Pyridoxine
E. Nicotinamide
55. The precursor for coenzyme NAD shown in figure 54 is:
A. Thiamin
B. Riboflavin
C. Lipoic acid
D. Pyridoxine
E. * Nicotinamide
56. The precursor for coenzyme NAD shown in figure 9 is:
A. Thiamin
B. Riboflavin
C. Lipoic acid
D. Pyridoxine
E. * Nicotinamide


57. The process of electron transferring via the factors shown in figure 76 is called:
A. Oxidative respiration
B. Oxidative phosphorylation
C. Substrate-level phosphorylation
D. * Tissue respiration
E. Substrate-level oxidation
58. The scheme of stages of catabolism is shown in figure 90. What compound is replaced 
with the digit 1?
A. * Glucose
B. Pyruvate
C. Acetyl CoA
D. Citrate
E. NADH
59. The scheme of stages of catabolism is shown in figure 90. What compound is replaced 
with the digit 2?
A. Glucose
B. Pyruvate
C. * Acetyl CoA
D. Citrate
E. NADH
60. The sequence of components shown in figure 76 is called:
A. * Electron transport chain
B. Proton transport chain
C. NADH transport chain
D. NADH-O2 oxido-reductase
E. Proton ATP-ase
61. The typical curve reflecting the enzyme activity vs pH is shown in figure 57. Which 
value of pH the question-mark corresponds to?
A. 5
B. 6
C. * 7
D. 8
E. 9
62. The typical curve reflecting the enzyme activity vs temperature is shown in figure 59. 
Which value of temperature does the question-mark correspond to?
A. 27
B. 31
C. * 37
D. 42
E. 47
63. What biochemical pathway is shown in figure 92?
A. Glycolysis
B. Gluconeogenesis
C. Pentose phosphate pathway
D. * Citric acid cycle
E. Glycogenolysis
64. What compound is replaced with question-mark in figure 83?
A. ATP
B. * H3PO4
C. AMP
D. Pyruvate
E. Lactate


65. What enzyme catalyzes the reaction #1 in biological pathway depicted in figure 92?
A. Citrate synthase
B. * Aconitase
C. Isocitrate dehydrogenase
D. Alpha-ketoglutarate dehydrigenase
E. Succinyl CoA synthase
66. What enzyme catalyzes the reaction #4 in biological pathway depicted in figure 92?
A. Citrate synthase
B. Aconitase
C. Isocitrate dehydrogenase
D. Alpha-ketoglutarate dehydrigenase
E. * Succinyl CoA synthase
67. What enzyme catalyzes the reaction #5 in biological pathway depicted in figure 92?
A. Succinyl CoA synthase
B. * Succinate dehydrogenase
C. Fumarase
D. Malate dehydrogenase
E. Citrate synthase
68. What enzyme catalyzes the reaction #6 in biological pathway depicted in figure 92?
A. Succinyl CoA synthase
B. Succinate dehydrogenase
C. * Fumarase
D. Malate dehydrogenase
E. Citrate synthase
69. What enzyme catalyzes the reaction #7 in biological pathway depicted in figure 92?
A. Succinyl CoA synthase
B. Succinate dehydrogenase
C. Fumarase
D. * Malate dehydrogenase
E. Citrate synthase
70. What enzyme catalyzes the reaction 8 in biological pathway depicted in figure 92?
A. Succinyl CoA synthase
B. Succinate dehydrogenase
C. Fumarase
D. Malate dehydrogenase
E. * Citrate synthase
71. What enzyme catalyzes the reaction № 3 in biological pathway depicted in figure 92?
A. Citrate synthase
B. Aconitase
C. Isocitrate dehydrogenase
D. * Alpha-ketoglutarate dehydrogenase
E. Succinyl CoA synthase
72. What principle of enzyme regulation is shown in figure 87?
A. * Feedback inhibition
B. Feed-forward activation
C. Feed-forward inhibition
D. Feedback activation
E. None of the above
73. What principle of enzyme regulation is shown in figure 78?
A. Feedback inhibition
B. * Proteolytic activation
C. Feed-forward inhibition


D. Feedback activation
E. None of the above
74. What product is shown in figure 82?
A. * acetil Co A
B. H3PO4
C. AMP
D. Pyruvate
E. Lactate
75. What reaction is shown in figure 91?
A. Reduction of pyruvate
B. Oxidation of acetyl CoA
C. Entering of acetyl CoA into tricarboxylic acid cycle
D. * Oxidative decarboxylation of pyruvate
E. Oxidative reduction of pyruvate
76. What theory describes the scheme shown in figure 81?
A. Key-and-lock theory
B. Fit-induced theory
C. * Chemiosmotic theory
D. Enzyme-substrate complex theory
E. Koshland theory
77. What theory of active site-substrate interaction is presented in the figure 50?
A. * Fischer theory
B. Coshland theory
C. Horbachevky theory
D. Mitchell theory
E. Krebs theory
78. What theory of active site-substrate interaction is presented on the figure 51?
A. Fischer theory
B. * Coshland theory
C. Horbachevky theory
D. Mitchell theory
E. Krebs theory
79. What type of enzyme regulation is shown in figure 71?
A. Covalent modification
B. Uncompetitive
C. Competitive
D. * Allosteric
E. Proteolytic
80. What type of inhibition is shown in figure 69?
A. Noncompetitive
B. Uncompetitive
C. * Competitive
D. Allosteric
E. Proteolytic
81. What type of inhibition is shown in figure 70?
A. * Noncompetitive
B. Uncompetitive
C. Competitive
D. Allosteric
E. Proteolytic
82. What type of metabolic pathway is depicted in the figures 84?
A. * Linear


B. Cyclic
C. Spiral
D. Dichotomic
E. None of the above
83. What type of metabolic pathway is depicted in the figures 85?
A. Linear
B. * Cyclic
C. Spiral
D. Dichotomic
E. None of the above
84. What type of metabolic pathway is depicted in the figures 86?
A. Linear
B. Cyclic
C. * Spiral
D. Dichotomic
E. None of the above
85. Where does reaction depicted in figure 91 take place?
A. In cytoplasm
B. In nucleus
C. In endoplasmic reticulum
D. * In matrix of mitochondria
E. In lysosomes
86. Which class does the enzyme catalyzing the reaction shown in figure 61 belong to?
A. Oxido-reductases
B. * Transferases
C. Hydrolases
D. Lyases
E. Ligases
87. Which class does the enzyme catalyzing the reaction shown in figure 62 belong to?
A. Oxido-reductases
B. Transferases
C. * Hydrolases
D. Lyases
E. Ligases
88. Which class does the enzyme catalyzing the reaction shown in figure 68 belong to?
A. * Oxido-reductases
B. Transferases
C. Hydrolases
D. Lyases
E. Ligases
89. Which class does the enzyme catalyzing the reaction shown in figure 64 belong to?
A. Oxido-reductases
B. Transferases
C. Hydrolases
D. Lyases
E. * Isomerases
90. Which class does the enzyme catalyzing the reaction shown in figure 65 belong to?
A. Oxido-reductases
B. Transferases
C. Hydrolases
D. Lyases
E. * Ligases


91. Which class does the enzyme catalyzing the reaction shown in figure 60 belong to?
A. * Oxido-reductases
B. Transferases
C. Hydrolases
D. Lyases
E. Ligases
 

Yüklə 0,52 Mb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin