MÜHAZİRƏ 5
Monoton ardıcıllıqlar.
Tərif 5. Əgər ardıcıllığının hər bir həddi özündən əvvəlki, həddən kiçik (böyük) deyilsə, yəni istənilən n nömrəsi üçün
(3)
bərabərsizliyi doğru olarsa, bu ardıcıllığa azalmayan (artmayan) ardıcıllıq deyilir.
Azalmayan və artmayan ardıcıllıqlar, ümumiyyətlə, monoton ardıcıllıqlar adlanır.
Əgər (3) bərabərsizliyi ciddi ödənərsə, yəni olarsa ardıcıllığı artan (azalan) ardıcıllıq adlanır.
Ola bilər ki, (3) bərabərsizliyi müəyyən nömrəsindən sonra ödənsin. Onda deyilir ki, ardıcıllıq n0 nömrəsindən başlayaraq monotondur.
ardıcıllığının hədlər çoxluğunun dəqiq yuxarı (aşağı) sərhədinə bu ardıcıllığın dəqiq yuxarı (aşağı) sərhədi deyilir və kimi işarə olunur.
İstənilən üçün bərabərsizliyi ödənərsə, onda -a ardıcıllığının maksimal (minimal) həddi deyilir və kimi işarə olunur. Aydındır ki, əgər ardıcıllığın maksimal (minimal) həddi varsa
Sonlu varlığından varlığı çıxmır. Yəni ardıcıllıq yuxarıdan (aşağıdan) məhdud olduqda belə maksimal (minimal) həddə malik olmaya bilər.
Dostları ilə paylaş: |