MühaziRƏ 1 Analizə giriş Riyazi induksiya üsulu


Teorem 12. (Bolsano-Veyerştras



Yüklə 1,68 Mb.
səhifə31/34
tarix02.01.2022
ölçüsü1,68 Mb.
#47662
1   ...   26   27   28   29   30   31   32   33   34
analiz

Teorem 12. (Bolsano-Veyerştras) Hər bir məhdud ardıcıllıqdan yığılan alt ardıcıllıq ayırmaq olar.

Buradan nəticə olaraq çıxır ki, hər bir məhdud ardıcıllığın heç olmasa bir limit nöqtəsi var.



Tərif 12. ardıcıllığının xüsusi limitlərinin ( və ya limit nöqtələrinin) ən böyüyünə onun yuxarı limiti deyilir və

kimi işarə olunur.



ardıcıllığının xüsusi limitlərinin ( və ya limit nöqtələrinin) ən kiçiyinə onun aşağı limiti deyilir və

kimi işarə olunur.

Hər bir məhdud ardıcıllığın sonlu aşağı və yuxarı limiti var və

.

Əgər ardıcıllıq yuxarıdan (aşağıdan) qeyri-məhdud olarsa ( ) qəbul olunur.



Teorem 13. Ardıcıllığın yığılan olması üçün zəruri və kafi şərt onun məhdud olması və aşağı limiti ilə yuxarı limitinin üst-üstə düşməsidir, yəni




Yüklə 1,68 Mb.

Dostları ilə paylaş:
1   ...   26   27   28   29   30   31   32   33   34




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin