Mustaqil ishi Mavzu: Ornatilgan tizimlarda taqsimlangan va parallel ishlav berish



Yüklə 455,21 Kb.
səhifə9/12
tarix25.02.2022
ölçüsü455,21 Kb.
#53089
1   ...   4   5   6   7   8   9   10   11   12
Ornatilgan tizimlarda taqsimlangan va parallel ishlav berish

nujc

hD{n) = 2 fc, n = 0.



2.2 - jadval.

Funksiya

O'tish kengligi (normallashgan)

O'tkazish

oralig'idagi

tekissizlik

Tushish

oralig'idagi

pasaytirish

Formula

To'g'riburchakli

0.9/

IN

0.7416

21

1

Xenning

3A/n

0.0546

44

2nn

0.5 + 0.5 cos (——)

y J

Xemming

3-3/n

0.0194

53

2nn

0.54 + 0.46cos(——-)

y J

Blekman

5-5/n

0.0017

75

( 2nn \ ( 4nn \

0.4 2 + 0.5 со s ( ) + 0.0 8 со s ( )

\N - 1/ \N - 1)







    1. - jadvaldan ko'rinib turibdiki tushirish oralig'idagi pasaytirishni Xemming va Blekman funksiyalari qanoatlantiradi. Soddalik uchun Xemming

funksiyasini olamiz. U holda Af = 0.3 / 8 = 0.0375, bundan N = 3.3 / 0.0375 = 88. Koeffitsientlar soni toq bo'ladigan qilib 89 ta qiymat olamiz.

hD(n)w(n), -44 < n < 44







hD(ri) = 2 fc

sin(nwc)

nwr

hD(n) = 2 fC ,

w (n) = 0.54 + 0.46с о s ( 2 пп/%д) ,

n Ф 0 n = 0

-44 < n < 44.
bu yerda

Yuqoridagi formuladan bizga nomalum koeffitsientlardan faqatgina fc va wc lar qoldi. Bular diskretlash chastotasiga nisbatan normallashgan chastotalar.

300 1150

fc = 1000 + — = 1150 Hz -> —— = 0.14375 Jc 2 8000

Shunday ekan h(n) simmetrik funksiya bo'lgani uchun faqatgina h(0), h(1) ... h(44) ni hisoblash kifoya, qolganlarini simmetriklik shartidan hosil qilish mumkin.

n = 0: ho(0) = 2 ■ 0.143 75 = 0.2875, w(0) = 0.54 + 0.46 cos(0) = 1, h(0) = hD(0) ■ w(0) = 0.2875.

n = 1: hD(1) = 2- 0.143 75 -sin ( 2 n' 0'143 7 5} = 0.2499,

w(1) = 0.54 + 0.46 cos( 2 tt/89) = 0.9975, h(1) = hD(1) ■ w(1) = 0.2499 - 0.9975 = 0.2493.

n = 44: hD(44) = 2 - 0.143 75 - s 1 n (4 4 - 2- 014375) = 0.0064,

w(44) = 0.54 + 0.46 cos(2 t - 44 - /89) = 0.08, h(44) = hD(44) ■ w(44) = 0.0064- 0.08= 0.0005.

Ushbu qiymatlar yuqoridagi talab qilingan past chastotali filtrning h(n) keffitsientlaridir. Koeffitsientlarning qolgan qismini h(n) funksiyasining simmetriklik shartidan kelib chiqib hisoblash mumkin.



Past chastotali filtr h(n) koeffitsientlari. (N = 89, Xemming, fc=1 kHz, Af=0.3 kHz)


h(0)

0.0005

h(88)

h(1)

0.0006

h(87)

h(2)

0.0002

h(86)

h(3)

-0.0005

h(85)

h(4)

-0.0008

h(84)

h(5)

-0.0006

h(83)

h(6)

0.00025

h(82)

h(7)

0.0011

h(81)

h(8)

0.0012

h(80)

h(9)

0.0003

h(79)

h(10)

-0.0012

h(78)

h(11)

-0.0021

h(77)

h(12)

-0.0014

h(76)

h(13)

0.0007

h(75)

h(14)

0.0029

h(74)

h(15)

0.0031

h(73)

h(16)

0.0006

h(72)

h(17)

-0.0031

h(71)

h(18)

-0.0051

h(70)

h(19)

-0.0032

h(69)

h(20)

0.002

h(79)

h(21)

0.0066

h(67)

h(22)

0.0067

h(69)

h(23)

0.0010

h(65)

h(24)

-0.0068

h(64)

h(25)

-0.0107

h(63)

h(26)

-0.0062

h(62)

h(27)

0.0045

h(68)

h(28)

0.0139

h(60)

h(29)

0.0135

h(59)

h(30)

0.0014

h(58)

h(31)

-0.0147

h(57)

h(32)

-0.0221

h(56)

h(33)

-0.0123

h(55)

h(34)

0.0108

h(54)

h(35)

0.0309

h(53)

h(36)

0.0298

h(52)

h(37)

0.0017

h(51)








h(38)

-0.0387

h(50)

h(39)

-0.0606

h(49)

h(40)

-0.0354

h(48)

h(41)

0.0439

h(47)

h(43)

0.154

h(46)

h(43)

0.2496

h(45)

h(44)

0.2875

h(44)







    1. Mos keluvchi strukturali filtrni tasvirlash

KIX filtri quyidagi H(z) tavsiflovchi funksiya orqali xarakterlanadi.

JV-l


H(z) = Z h(n)z~n

n= 0

Strukturali filtrni tasvirlash bu tavsiflovchi funksiyaning blok-sxema korinishi yozishning bir usuludir. Ko'p hollarda bunday strukturalar ko'paytuvchilar, summatorlar va kechiktiruvchi elementlarning o'zoro bir biri bilan bog'lanishidan tashkil topadi. Bular ichidan eng ko'p foydalaniladiganlaridan biri transversal struktura hisoblanadi. Transversal struktura 2.1 - rasm tasvirlangan










Yüklə 455,21 Kb.

Dostları ilə paylaş:
1   ...   4   5   6   7   8   9   10   11   12




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin