Muxammad al-Xorazmiy nomidagi tatu qarshi filiali Telekomunikatsiya tehnologiyalari va Kasbiy talim fakultiteti ri 1 -22 guruh talabasi Junaydullayev Aliakbarning Fizika fanidan tayyorlagan mustaqil ishi-4 qarshi-2023



Yüklə 122,16 Kb.
səhifə1/2
tarix16.05.2023
ölçüsü122,16 Kb.
#113812
  1   2
FIZIKA 4 MUSTAQIL ISH



Muxammad al-Xorazmiy nomidagi TATU Qarshi filiali
Telekomunikatsiya tehnologiyalari va Kasbiy talim fakultiteti RI 11 -22 guruh talabasi
Junaydullayev Aliakbarning Fizika 2 fanidan tayyorlagan

MUSTAQIL ISHI-4



QARSHI-2023

1-Mavzu: Nano o’lchamli klasterlar va kristallar. Nanotexnologiya

Reja:


  1. Nanoo’lchamli klasterlar va kristallar

  2. Nanotexnologiya

Keyingi o‘n yillikda jahon jamoatchiligi lug‘at boyligiga «nano» so‘zi kirib keldi. Xo‘sh, «nano» nima? Qisqa qilib aytganda, nano milliarddan bir qismdir.



Nanotexnologiya tushunchasi uchun tugal va aniq ifoda yo‘q, ammo mavjud mikrotexnologiya asosida bu o‘lchamlarni nanometrdagi texnologiya deb yuritish mumkin. Shuning uchun mikrodan nanoga o‘tish bu moddani boshqarishdan atomni boshqarishga o‘tish demakdir. Sohaning rivoji deganda esa asosan uchtayo‘nalish tushuniladi:
- o‘lchami atom va molekulalar o‘lchamlari bilan solishtirarli elektron sxemalarni tayyorlash;
- nanomashinalarni loyihalash va ishlab chiqish;
- alohida atom va molekulalarni boshqarish va ulardan alohida mikroob'ektlarni yig‘ish.
Nanomateriallar – nanozarrachalar yoki nanotexnologiyalar yordamida yaratilgan va o’lchamlari juda kichikligi hisobiga i ajoib xusussiyatlarga ega bo’lgan materiallar. Nanomateriallarga hech bo’lmasa bitta o’lchami 1 dan 100 nm oralikda yotgan materiallar tegishli.
Odatdagi o’lchamlar
Bir necha ming yillar davomida odamlar hamma narsalarni ko’zlari o’rgangan me’yor bilan, ya’ni odam bo’yi bilan baholab kelgan. Barcha halqlarda ham o’lcham birligi metr, yoki unga yaqin bo’lgan kattalik bo’lgan.XVII asrda odam ko’zi mikroskop tufayli ming marta kichik ob’yektlarni ko’rib boshlagan. Ammo buyumlarni va mexanizmlarning kichrayishi materiallar va kurilmalarning kichrayishiga bo’liq.
ХХ asrning o’rtasida vakuum lampalar elektronikani rivojlanishiga olib keldi. Ommabop holatda televizorlar ishlab chiqildi.
ХХ asrning o’rtasida o’lchamlar yana ming marta kichraydi – natijada hisoblash mashinalarning imkoniyatlari keskin oshdi. 15 yil ichida 1981 yilda birinchi personal kompyuter yaratildi. Odamzod tarixida internet bilan bog’liq bo’lgan yangi sahifa ochildi –Internet.
Nanofizika va nanotexnologiyalarni asoschisi yirik fizikolim Richard Feynman (1918-1988). Amerika fiziklar jamiyatining majlisida 1959 yilda qilgan “Pastda hali ko’p joy” ma’ruzasida bashorat qilib, qator g’oyalarni oldinga surdi. R.Feynmanni fikri bo’yicha odamlar juda uzoq vaqt davomida yonida bir dun’yo borligini bilmasdan yashab kelgan. Biror narsani ko’rmasak u bilan ishla olmaymiz. 1993 yildan boshlab R.Feynman nomidagi mukofot har yili nanotexnologiyalar sohasida buyuk yutuqlarga erishganlarga beriladi. Mikroob’yektlar yaratishni rag’batlantirish uchun R.Feynman 1mm dan kichik elektromotor yaratganiga 1000$ mukofot e’lon qilgan. Va ko’p vaqt o’tmasdan bunday motor yaratilgan.
Bugungi kunga qadar (2018-2019) dunyoda nanotexnologiyalar va nanoproduktsiya nima ekanligini tasvirlaydigan yagona standart yo'q.
"Nanotexnologiya" tushunchasiga quyidagilar kiradi:
Neyrotexnologiya sohasi yarim asrga ega, ammo u faqat so'nggi 20 yil ichida etuklikka erishdi. Asosiy voqea olimlarga tajribalar paytida miyaning ishini bevosita kuzatishga imkon beradigan neyroimagingning paydo bo'lishi edi. Neyrotexnologiyalar jamiyatga jiddiy ta'sir ko'rsatdi, garchi ularning mavjudligi shunchalik ahamiyatsiz bo'lsa-da, ularning deyarli barchasini sezmaydilar.
Dori-darmonlardan miya skanerlashigacha, neyrotexnologiyalar rivojlangan mamlakatlarning deyarli barcha aholisiga to'g'ridan-to'g'ri yoki bilvosita ta'sir qiladi, ular depressiya, uyqusizlik, diqqat etishmovchiligining giperaktivligini buzish, antiviruslarga qarshi vositalar yoki saraton kasalligini skanerlash, insultni tiklash va boshqalar.
Sanoat rivojlanib borgan sari, bu jamiyatning shaxsiyat va turmush tarziga ta'sir qiladigan miyaning ko'plab imkoniyatlarini boshqarish va ulardan foydalanishga imkon beradi. Umumiy texnologiya allaqachon buni amalga oshirishga harakat qilmoqda; Brain Age [1] kabi o'yinlar va miyaning faoliyatini yaxshilashga qaratilgan Fast ForWord [2] kabi dasturlar neyrotexnologiyalar toifasiga kiradi.
Hozirgi vaqtda fan miyaning tuzilishi va faoliyatining deyarli barcha jihatlarini tasvirlashga qodir. Bu depressiyani, giperaktivlikni, uyqusizlikni va boshqalarni boshqarishga yordam beradi. Terapiyada bu qon tomir qurbonlariga harakatlarni muvofiqlashtirishni yaxshilashga, miya faoliyatini yaxshilashga, epilepsiya xurujlari sonini kamaytirishga, vosita funktsiyalari buzilgan bemorlarga (Parkinson, Xantington kasalligi, ALS) yordam beradi va xayoliy og'riqlardan xalos bo'lishga yordam beradi [3].
Neyrotexnologiyaning rivojlanishi nevrologik muammolari bo'lgan bemorlarni reabilitatsiya qilish uchun ko'plab yangi usullarni va'da qilmoqda. Neyrotexnologik inqilob 2007 yilda boshlangan "Fikrlash o'n yilligi" tashabbusini amalga oshirdi [4]. Bundan tashqari, miyada aql va ongning paydo bo'lishi mexanizmlarini aniqlashga imkon beradi.
Zamonaviy texnologiyalar
Vizualizatsiya
Magnit-rezonans tomografiya (MRI) miyaning topologik va signal tuzilmalarini skanerlash, shuningdek miya faoliyatini vizual tekshirish uchun ishlatiladi. MRGdan foydalanish nevrologiyada juda katta oqibatlarga olib keladi. Bu, ayniqsa funktsional MRI (fMRI) paydo bo'lganidan keyin fikrlashni o'rganishda muhim ahamiyatga ega [5]. Funktsional MRI miya mintaqalari faollashuvining kislorod miqdorining oshishiga bog'liqligini o'lchaydi.
Texnologiya miyaning turli sohalari va sohalari o'rtasida assotsiativ ulanishlar xaritasini yaratishga imkon beradi, shu jumladan yangi joylar va maydonlarni aniqlaydi. FMRI tufayli bemorlar real vaqtda miyalarining stimulga qanday javob berishini ko'rishlari mumkin va shu bilan vizual mulohazalarni olishadi.
Kompyuter tomografiyasi (KT) 1970 yildan beri ishlatiladigan yana bir miyani skanerlash texnologiyasidir. Akademik muhitda kompyuter tomografiyasining ko'plab funktsiyalari hozirda MRGga o'tmoqda, ammo avvalgisi sog'liqni saqlash muassasalarida miya faoliyati va shikastlanishini aniqlash uchun ishlatiladi. Rentgen nurlari yordamida olimlar miyada radioaktiv yorliqlarni o'rnatadilar, ular faoliyat nuqtalarini miyada aloqalarni o'rnatish vositasi sifatida ko'rsatadilar, shuningdek, miyaga uzoq muddatli shikast etkazadigan (masalan, anevrizma yoki saraton kabi) ko'plab shikastlanishlar / kasalliklarni aniqlaydilar [5].
Pozitron emissiya tomografiyasi (PET) bu pozitron nurlanish manbalari (glyukoza kabi) bo'lgan markerlarni mahkamlash uchun tuzilgan yana bir tasvirlash usuli [5]. PET tez-tez ishlatiladi, chunki bu metabolik jarayonlarni aniqlashga imkon beradi: miyaning muammoli joylari ko'proq glyukoza iste'mol qiladi

2-Mavzu: Fizikaviy jarayonlarni modellashtirish imkoniyatini beruvchi dasturiy vositlar orqali fizikaviy jarayonlarni modellashtrish.


Reja:


  1. Matematik modellashtirish va uning bosqishlari.

  2. Kompyuterli modellashtirish va uning dasturiy vositalari.

  3. Xulosa.

Model (lot.modulus-o‘lchov, meyyor)–biror ob‘yekt yoki ob‘yektlar tizimining obrazi yoki namunasidir. Masalan, Yerning modeli - globus, osmon va undagi yulduzlar modeli - plannetariy ekrani, pasportdagi sur‘atni shu pasport egasining modeli deyish mumkin. Insoniyatni farovon hayot shart-sharoitlarini yaratish, tabiiy ofatlarni oldindan aniqlash muammolari qadimdan qiziqtirib kelgan. Shuning uchun ham insoniyat tashqi dunyoning turli hodisalarini o‘rganishi tabiiy holdir. Aniq fanlar sohasi mutahassislari u yoki bu jarayonning faqat ularni qiziqtirgan hossalarinigina o‘rganadi. Masalan, geologlar Yerning rivojlanish tarixini, ya‘ni qachon, qayerda va qanday hayvonlar yashaganligi, o‘simliklar o‘sganligi, iqlim qanday o‘zgarganligini o‘rganadi. Bu ularga foydali qazilma konlarini topishlarida yordam beradi. Lekin ular Yerda kishilik jamiyatining rivojlanish tarixini o‘rganishmaydi, bu bilan tarixchilar shug‘ullanadi. Atrofimizdagi dunyoni o‘rganish natijasida noaniq va to‘liq bo‘lmagan ma‘lumotlar olinishi mumkin. Lekin bu koinotga uchish, atom yadrosining sirini aniqlash, jamiyatning rivojlanish qonunlarini egallash va boshqalarga halaqit qilmaydi. Ular asosida o‘rganilayotgan hodisa va jarayonlarning modeli yaratiladi. Model ularning xususiyatlarini mumkin qadar to‘laroq akslantirishi zarur. Modelning taqribiylik xarakteri turli ko‘rinishda namoyon bo‘lishi mumkin. Masalan, tajriba o‘tkazish mobaynida foydalaniladigan asboblarning aniqligi olinayotgan natijasining aniqligiga ta‘sir etadi. Modellashtirish- bilish ob‘yektlari (fizik hodisa va jarayonlar) ni ularning modellari yordamida tadbiq qilish mavjud predmet va hodisalarning 7 modellarini yasash va o‘rganishdir. Modellash uslubidan hozirgi zamon fanida keng foydalanilmoqda. U ilmiy tadqiqot jarayonini yengillashtiradi, ba‘zi hollarda esa murakkab ob‘yektlarni o‘rganishning yagona vositasiga aylanadi. Mavhum ob‘yekt, olisda joylashgan ob‘yektlar, juda kichik hajmdagi ob‘yektlarni o‘rganishda modellashtirishning ahamiyati katta. Modellashtirish uslubidan fizika, astronomiya, biologiya, iqtisod fanlarida ob‘yektning faqat ma‘lum xususiyat va munosabatlarini aniqlashda ham foydalaniladi. Modellarni tanlash vositalariga qarab ularni uch guruhga ajratish mumkin. Bular abstrakt, fizik va biologik guruhlar. Abstrakt modellar qatoriga matematik, matematik-mantiqiy va shu kabi modellar kiradi. Fizik modellar qatoriga kichiklashtirilgan maketlar, turli asbob va qurilmalar, trenajerlar va shu kabilar kiritiladi. Modellarning mazmuni bilan qisqacha tanishib chiqamiz.

1. Fizik model. Tekshiralayotgan jarayonning tabiati va geometrik tuzilishi asl nusxadagidek, ammo undan miqdor (o‘lchami, tezligi, ko‘lami) jihatidan farq qiladigan modellar, masalan, samolyot, kema, avtomobil, poyezd, GES va boshqalarning modellari fizik modelga misol bo‘ladi.
2. Matematik modellar tirik organizmlarning tuzilishi, o‘zaro aloqasi, vazifasiga oid qonuniyatlarning matematik va mantiqiy-matematik tavsifidan iborat bo‘lib, tajriba ma‘lumotlariga ko‘ra yoki mantiqiy asosda tuziladi, so‘ngra tajriba yo‘li bilan tekshirib ko‘riladi.
3. Biologik modellar Bunda shu holat yoki kasallikning kelib chiqish mexanizmi, kechishi, oqibati kabilar tajriba asosida o‘rganiladi. Biologik modelda har hil usullar genetik apparatga ta‘sir qilish, mikroblar yuqtirish, ba‘zi organlarni olib tashlash yoki ular faoliyati mahsuli bo‘lgan garmonlarni kiritish va boshqa usullar qo‘llaniladi. Bunday modellarda genetika, fiziologiya, farmakologiya sohasidagi bilimlar tadbiq qilinadi.
4. Fizik-kimyoviy modellar biologik tuzilish, funksiya yoki jarayonlarni fizik yoki kimyoviy vositalar bilan qaytadan hosil qilishdir.
5. Iqtisodiy model taxminan XVIII asrdan qo‘llanila boshlandi. F.Kenening “Iqtisodiy jadvallar”ida birinchi marta ijtimoiy takror ishlab chiqarish jarayonini ko‘rsatishga harakat qilingan. Iqtisodiy tizimlarning turli faoliyat yo‘nalishlarini o‘rganish uchun har xil modellaridan foydalaniladi. Iqtisodiy taraqqiyotning eng umumiy qonuniyatlari xalq ho‘jaligi modellari yordamida tekshiriladi. Turli murakkab ko‘rsatkichlar, jumladan, milliy daromad, ish bilan bandlik, iste‘mol, jamg‘armalar, investisiya ko‘rsatkichlarining dinamikasi va nisbatini tahlil qilish, uni oldindan aytib berish uchun katta iqtisodiy modellar qo‘llaniladi. Aniq ho‘jalik vaziyatlarini tekshirishda kichik iqtisodiy tizimlardan, murakkab iqtisodiy tizimlarini tekshirishda, asosan, matematik modellardan foydalaniladi. Matematik modellar tirik organizmlarning tuzilishi, o‘zaro aloqasi, vazifasiga oid qonuniyatlarning matematik va mantiqiy-matematik tavsifidan iborat bo‘lib, tajriba ma‘lumotlariga ko‘ra yoki mantiqiy asosda tuziladi, so‘ngra tajriba yo‘li bilan tekshirib ko‘riladi. Biologik hodisalarning matematik modellarini kompyutyerda o‘rganish tekshirilayotgan biologik jarayonning o‘zgarish xarakterini oldindan bilish imkonini beradi. Shuni ta‘kidlash kerakki, bunday jarayonlarni tajriba yo‘li bilan tashkil qilish va o‘tkazish ba‘zan juda qiyin kechadi. Matematik va matematikmantiqiy modelning yaratilishi, takomillashishi va ulardan foydalanish matematik hamda nazariy biologiyaning rivojlanishiga qulay sharoit tug‘diradi. Matematik modellashtirish aniq fanlardagi turli amaliy masalalarni yechishda muvaffaqiyat bilan qo‘llanib kelinmoqda. Matematik modellashtirish uslubi masalani xarakterlaydigan u yoki bu kattalikni miqdor jihatdan ifodalash, so‘ngra bog‘liqligini o‘rganish imkoniyatini beradi. Uslub asosida matematik model tushunchasi yotadi. Matematik model deb o‘rganilayotgan ob‘yektni matematik formula yoki algoritm ko‘rinishida ifodalangan xarakteristikalari orasidagi funksional bog‘lanishga aytiladi. Kompyuter ixtiro etilgandan so‘ng matematik modellashning ahamiyati keskin oshdi. Murakkab texnik, iqtisodiy va ijtimoiy tizimlarni yaratish, so‘ngra ularni kompyuterlar yordamida tatbiq etishning haqiqiy imkoniyati paydo bo‘ldi. Endilikda ob‘ekt, ya‘ni haqiqiy tizim ustida emas, balki uni almashtiruvchi matematik model ustida tajriba o‘tkazila boshlandi. Kosmik kemalarning harakat trayektoriyasi, murakkab muhandislik inshootlarini yaratish, transport magistrallarini loyihalash, iqtisodni rivojlantirish va boshqalar bilan bog‘liq bo‘lgan ulkan hisoblashlarning kompyutyerda bajarilishi matematik modellash uslubining samaradorligini tasdiqlaydi. Odatda, matematik model ustida hisoblash tajribasini o‘tkazish haqiqiy ob‘yektni tajribada tadqiq etish mumkin bo‘lmagan yoki iqtisodiy jihatdan maqsadga muvofiq bo‘lmagan hollarda o‘tkaziladi. Bunday hisoblash tajribasining natijalari haqiqiy ob‘yekt ustida olib boriladigan tajribaga qaraganda juda aniq emasligini ham hisobga olish kerak. Lekin shunday misollarni keltirish mumkinki, kompyutyerda o‘tkazilgan hisoblash tajribasi o‘rganilayotgan jarayon yoki hodisa haqidagi ishonchli axborotning yagona manbai bo‘lib xizmat qiladi. Masalan, faqat matematik modellashtirish va kompyutyerda hisoblash tajribasini o‘tkazish yo‘li bilan yadroviy urushning iqlimga ta‘siri oqibatlarini oldindan aytib berish mumkin. Kompyuter yadro quroli urushida mutlaq g‘olib bo‘lmasligini ko‘rsatadi. Kompyuterli tajriba Yer yuzida bunday urush oqibatida ekologik o‘zgarishlar, ya‘ni haroratning keskin o‘zgarishi, atmosferaning changlanishi, qutblardagi muzliklar erishining ro‘y berishi, xatto, Yer o‘z o‘qidan chiqib ketishi mumkinligini ko‘rsatadi. Matematik modellashda berilgan fizik jarayonlarning matematik ifodalari modelashtiriladi. Matematik model tashqi dunyoning matematik belgilar bilan ifodalangan qandaydir hodisalar sinfining taqribiy tavsifidir. Matematik model tashqi dunyoni bilish, shuningdek, oldindan aytib berish va boshqarishning kuchli uslubi hisoblanadi. Matematik modelni tahlil qilish o‘rganilayotgan hodisaning mohiyatiga singish imkoniyatini beradi. Hodisalarni matematik model yordamida o‘rganish to‘rt bosqichda amalga oshiriladi. Birinchi bosqich - modelning asosiy ob‘yektlarini bog‘lovchi qonunlarni ifodalash. Ikkinchi bosqich - modeldagi matematik masalalarni tekshirish. Uchinchi bosqich - modelning qabul qilingan amaliyot mezonlarini qanoatlantirishni aniqlash. Boshqacha aytganda, modeldan olingan nazariy natijalar bilan olingan ob‘yektni kuzatish natijalari mos kelishi masalasini aniqlash. To‘rtinchi bosqich - o‘rganilayotgan hodisa haqidagi ma‘lumotlarni jamlash orqali modelning navbatdagi tahlilini o‘tkazish va uni rivojlantirish, aniqlashtirish. Shunday qilib, modellashtirishning asosiy mazmunini ob‘yektni dastlabki o‘rganish asosida modelni tajriba orqali va nazariy tahlil qilish, natijalarni ob‘yekt haqidagi ma‘lumotlar bilan taqqoslash, modelni tuzatish (takomillashtirish) va shu kabilar tashkil etadi. Matematik model tuzish uchun dastlab masala rasmiylashtiriladi. Masala mazmuniga mos holda zarur belgilar kiritiladi. So‘ngra kattaliklar orasida formula yoki algoritm ko‘rinishida yozilgan funksional bog‘lanish hosil qilinadi. Aytib o‘tilganlarni aniq misolda ko‘rib chiqamiz. O‘ylagan sonni topish masalasi (matematik fokus). Talabalarga ixtiyoriy sonni o‘ylash va u bilan quyidagi amallarni bajarish talab etiladi:
1. O‘ylangan son beshga ko‘paytirilsin.
2. Ko‘paytmaga bugungi sanaga mos son(yoki ixtiyoriy boshqa son) qo‘shilsin.
3. Hosil bo‘lgan yig‘indi ikkilantirilsin.
4. Natijaga joriy yil soni qo‘shilsin. Olib boruvchi biroz vaqtdan so‘ng talaba o‘ylagan sonni topishi mumkinligini ta‘kidlaydi. Ravshanki, talaba o‘ylagan son matematik fokusga mos model yordamida aniqlanadi. Masalani rasmiylashtiramiz: X-o‘quvchi o‘ylagan son, U-hisoblash natijasi, N-sana, M-joriy yil. Demak, olib boruvchining ko‘rsatmalari: U=(X5+N)2+M formula orqali ifodalanadi. Ushbu formula masalaning (matematik fokusning) matematik modeli bo‘lib xizmat qiladi va X o‘zgaruvchiga nisbatan chiziqli tenglamani ifodalaydi. Tenglamani yechamiz: X=((U-M)/2-N)/5 Ushbu formula o‘ylangan sonni topish algoritmini ko‘rsatadi.

Kompyuterli modellashtirish va uning dasturiy vositalari Ma‘lumotlar omborini loyihalash va yaratishdan oldin shu ma‘lumotlar omboriga joylashtiriladigan axborotlarning umumiy tuzilishi haqida tasavvurga ega bo‘lishi lozim. Ma‘lumotlar omboridan kerakli savollarga javob olish va ma‘lumotlarga turli o‘zgartirishlar kiritish uchun ham uning umumiy tuzilishini bilish maqsadga muvofiq. Chunki ma‘lumotlar omborida qanday ma‘lumotlar borligini bilsangizgina, ularga mos savollarni qo‘ya olasiz. Bir axborotni turli xil vositalar orqali va turli shaklarda ifodalash mumkin. Axborotlarni ifodalovchi vositalar majmuini ma‘lumotlar modeli deb ataladi. Albatta, turli odamlar tashqi dunyoni turlicha talqin qiladilar va ular haqida turlicha bilimga ega bo‘ladi. Shuning uchun ham haqiqiy dunyo va undagi hodisalarni anglashda turlicha modellardan foydalaniladi. Modellashtirish yoki modellashning rasmiy muammolarini o‘rganadigan va tadqiq etadigan yaxlit nazariya mavjud. Hozirgi kunda kompyutyerda modellashtirish texnologiyasi mavjud bo‘lib, uning maqsadi atrofimizni o‘rab turgan tabiat, unda ro‘y beradigan hodisa, voqealarni va jamiyatdagi o‘zgarishlarni anglash, tushunib yetish jarayonini zamonaviy usullar vositasida tezlashtirishdir. Kompyutyerda modellashtirish texnologiyasini o‘zlashtirish kompyuter tizimlarini (vositachi qurilma sifatida) yaxshi bilishni va unda modellash texnologiyalarini ishlata olishni talab qiladi. Kompyutyerda dasturlash tillaridan foydalanish matematik modellashtirish usulida jiddiy burilish yasadi. XX asr oxirlarida yaratilgan yuqori quvvatli Pentium prosessorli kompyuterlarda o‘rganilayotgan jarayonlar modellarining turli ko‘rinishlarini (grafik, diagramma, animatsiya, multiplikatsiya va h.k.) kompyuter ekranida hosil qilish mumkin. Ekrandagi modelni (masalan, rasm eskizini) turli xil darajada (tekislik, fazo o‘yicha) harakatga keltirish imkoniyatlari mavjud. Ekranda hosil qilingan modelni kompyuter xotirasida fayl ko‘rinishida saqlash va undan bir necha marta foydalanish mumkin. Umuman olganda, kompyuterli modellashtirishning metodologiyasida quyidagi yo‘nalishlarni ajratish mumkin:


1. Geometrik yo‘nalishdagi tajribalarni tashkillashtirish koordinatalar tekisligida amalga oshiriladi. Kompyuter geometrik ob‘yektlarning hossalarini o‘rganish va 12 matematik farazlarni tekshirishda modellarni qurish va ularni tadqiq etish vositasi sifatida ishlatiladi.


2. Ikkinchi yo‘nalish turli xil harakatlarni modellashtirish bilan bog‘liq. Kompyuter modellari orqali turli xil harakatli masalalarni yechish mumkin. Bu ro‘y beradigan jarayonlarning mohiyatini chuqurroq va kengroq his qilishga, olingan natijalarni haqiqiy baholash va kompyutyerda modellashtirish imkoniyatlari haqidagi tasavvurlarning kengayishiga olib keladi.
3. Uchinchi yo‘nalish - kompyuter ekranida funksiya grafiklarini modellashtirishkasbiy kompyuter tizimlarida keng qo‘llaniladi. Masalan, Logo dasturi funksiya grafiklari, tenglama va tenglamalar tizimini yechish va ularning natijalarini olish imkoniyatlarini beradi.

Eng muhimi shundaki, kompyutyerda modellashtirish texnologiyasidan foydalanish haqiqiy anglashda, bilish jarayonini amalga oshirishda yangi bosqich rolini o‘ynaydi. Ma‘lumotlar modellari shakli qanday bo‘lishidan qat‘iy nazar quyidagi talablarni bajarishi kerak:
1. Soddalik. Ma‘lumotlar modeli kam sondagi bog‘lanishli tuzilish turlariga ega bo‘lishi lozim.
2. Yaqqollik. Ma‘lumotlar modeli vizual (ko‘zga ko‘rinadigan, tasvirlanadigan) bo‘lishi kerak.
3. Qismlarga bo‘linishi. Ma‘lumotlar modeli ma‘lumotlar omborida oddiy o‘rin almashtirish imkoniyatiga ega bo‘lishi lozim.
4. O‘rin almashtirish. Ma‘lumotlar modeli o‘ziga o‘xshash modellar bilan almashtirilish imkoniyatiga ega bo‘lishi kerak.
5. Erkinlik. Ma‘lumotlar modeli aniq bo‘lakchalarnigina o‘z ichiga olmasligi lozim. Yuqorida ko‘rsatilgan talablar ham yaratiladigan modellarning idealligini ta‘minlay olmaydi. Chunki modellashtirishda haqiqiy ob‘yektning ba‘zi bir muhim xususiyatlarigina ishtirok etadi holos.
Atrofimizdagi dunyoni o‘rganish natijasida noaniq va to‘liq bo‘lmagan ma‘lumotlar olinishi mumkin. Lekin bu koinotga uchish, atom yadrosining sirini aniqlash, jamiyatning rivojlanish qonunlarini egallash va boshqalarga xalaqit etmaydi. Ular asosida o‘rganilayotgan hodisa va jarayonning modeli yaratiladi. Model ularning xususiyatlarini mumkin qadar to‘laroq akslantirishi zarur. Modelning taqribiylik xarakteri turli ko‘rinishda namoyon bo‘lishi mumkin. Masalan, tajriba o‘tkazish mobaynida foydalaniladigan asboblarning aniqligi olinayotgan natijaning aniqligi ta‘sir etadi. Modellashtirish-bilish ob‘yektlari (fizik hodisa va jarayonlar)ni ularning modellari yordamida tadqiq qilish mavjud predmet va hodisalarning modellarini yasash va o‘rganishdir. Modellash uslubidan hozirgi zamon fanida keng foydalanilmoqda. U ilmiy tadqiqot jarayonini yengillashtiradi, ba‘zi hollarda esa murakkab ob‘yektlarni o‘rganishning yagona vositasiga aylanadi. Mavhum ob‘yekt, olisda joylashgan ob‘yektlar, juda kichik hajmdagi ob‘yektlarni o‘rganishda modellashtirishning ahamiyati katta. Modellashtirish uslubidan fizika, astronomiya, biologiya, iqtisod fanlarida ob‘yektning faqat ma‘lum xususiyat va munosbatlarini aniqlashda ham foydalaniladi. Misol tariqasida qishloq ho‘jalik masalasiga matematik model tuzishni ko‘rib chiqamiz.

1.Masala. Rejalashtirilgan hosildorlik 30 s/ga, suvga bo‘lgan ehtiyoj koeffits ienti 200 m 3 /s bo‘lsa, suvga bo‘lgan ehtiyoj quyidagiga teng: Qo‘yilgan masalaga model tuzishda birinchi navbatda kerakli belgilashlarni kiritib olamiz: Rejalashtirilgan hosildorlikni U deb belgilaymiz. Suvga bo‘lgan ehtiyoj koeffitsienti K u deb belgilaymiz. Suvga bo‘lgan ehtiyojni E deb belgilaymiz va formula holiga keltiramiz. Rejalashtirilgan hosildorlikni U ni suvga bo‘lgan ehtiyoj koeffitsienti K u ga ko‘paytirilganda suvga bo‘lgan ehtiyoj E ni topamiz: E=UK u demak E=30200=6000 m3 /ga. Iqtisodiy tizimlarning turli faoliyat yo‘nalishlarini o‘rganish uchun har xil modellardan foydalaniladi. Iqtisodiy taraqqiyotning eng umumiy qonuniyatlari xalq ho‘jaligi modellar yordamida tekshiriladi. Turli murakkab ko‘rsatkichlar, jumladan, milliy daromad, ish bilan bandlik, iste‘mol, jamg‘armalar, investisiya ko‘rsatkichlarining dinamikasi va nisbatini tahlil qilish, uni oldindan aytib berish uchun katta iqtisodiy modellar qo‘llaniladi. Aniq ho‘jalik vaziyatlarini tekshirishda kichik iqtisodiy tizimlardan, murakkab iqtisodiy tizimlarni tekshirishda, asosan, matematik modellardan foydalaniladi.



Dars jarayonida kompyutyerdan foydalanishning muhim yo‘nalishlaridan biri - hodisa va jarayonlarni kompyuter yordamida modellashtirish. Fizikada o‘rganiladigan qonuniyat va jarayonlarni modellashtirishni bir necha turga ajratish mumkin:

 harakatning turli ko‘rinishlarini (tekis, notekis, tekis tezlanuvchan va h.k.) modellashtirish;


 funksional bog‘lanishli jarayonlarni modellashtirish;


 inson bevosita kuzata olmaydigan jarayonlarni (masalan, gaz molekulalarining Broun harakati, diffuziya hodisasi va h.k.) modellashtirish.


Fizika darslarida jarayonlarni modellashtirish o‘rganilayotgan materialning ko‘rgazmaliligini va bayonning ilmiy-nazariy mohiyati darajasini oshiradi, talabalardagi dunyoqarashni kengaytiradi, shakllanishini, ularning fikrlashini rivojlantiradi. Modellashtirish kompyutyerda masalani yechishning bir tarkibiy qismi hisoblanadi. Fizik jarayonni o‘rganuvchi aniq bir modelni ko‘rib chiqamiz. Masala.Yer atrofida ma‘lum (h km) balandlikda harakat qilayotgan Yerning sun‘iy yo‘ldoshi tezligiga ko‘ra uning qaysi orbita bo‘ylab harakat qilayotganligini aniqlovchi modelni yarating. Masalani yechish uchun undagi asosiy parametrlar, ya‘ni sun‘iy yo‘ldoshning Yerdan balandligi - h (km) va uning Yer atrofida doira bo‘ylab qiladigan harakatiga ko‘ra uning V (km/s) tezligi hisoblanadi. Fizikada Yer sun‘iy yo‘ldoshining birinchi kosmik tezligi V= gR formula orqali aniqlanadi. Bu yerda R - Yerning radiusi (6400 km) doimiy kattalik, g - Yer sirtida erkin tushish tezlanishi (9,8 m/s ga teng). Berilgan qiymatlarga ko‘ra V ni topish juda oson. Natijani topish uchun biror dasturlash tilida (masalan, Beysikda) dastur tuzib olish mumkin. Beysik tilidagi dastur ko‘rinishi quyidagicha bo‘ladi: 15 INPUT “Sun‘iy yo‘ldoshning balandligini kiriting”; h g=9.8: R1=6400 R=R1+h V=SQR(g*R) PRINT “Sun‘iy yo‘ldoshning tezligi-“; V IF V7.99 THEN PRINT “Sun‘iy yo‘ldosh 3-trayektoriyadan harakatlanadi” END Sun‘iy yo‘ldoshning tezligi 7,99 km/s dan kichik bo‘lsa, u 1-trayektoriya bo‘ylab harakat qiladi, 7,99 km/s ga teng bo‘lsa, 2-trayektoriya bo‘yicha, 7,99 km/s dan katta bo‘lsa, 3-trayektoriya bo‘yicha harakat qiladi. Modellash uslubidan hozirgi zamon fanida keng foydalanilmoqda. U ilmiy tadqiqot jarayonini yengillashtiradi, ba‘zi hollarda esa murakkab ob‘yektlarni o‘rganishning yagona vositasiga aylanadi. Biologik model turli tirik ob‘eklar va ularning qismlari-molekula, hujayra, organizm va shu kabilarga xos biologik tuzilish, funksiya va jarayonlarni modellashda qo‘llaniladi. Biologiyada, asosan, uch hil modeldan foydalaniladi. Ular biologik, fizik va matematik modellardir. Biologik model – odam va hayvonlarda uchraydigan ma‘lum bir holat yoki kasallikni laboratoriyada hayvonlarda sinab ko‘rish imkonini beradi. Bunda shu holat yoki kasallikning kelib chiqish mexanizmi, kechishi, oqibati kabilar tajriba asosida o‘rganiladi.




Xulosa:

Fan va texnika rivojlanib borar ekan turli zamonaviy dasturiy taminotlar ham ishlab chiqilmoqda. Xozirgi kunda matematikaviy va fizikaviy jarayonlarni modellashtrishda turli xildagi dasturiy ta’minotlardan foydalanilmoqda.


3-Mavzu: SUYUQ KRISTALLAR VA ULARNING XUSUSIYATLARI
Reja:
1. Suyuq kristallar haqida tushuncha
2. Suyuq kristall turlari. Nematik, smektik va holesterik
3. Elektr va magnit maydonlaridagi suyuq kristallarning xossalari
4. Suyuq kristallarni qo’llanilishi matritsaviy displeylar.
Тayanch so’z va iboralar:Suyuq kristallar. Nematik, smektik holesterik. Matritsaviy qurilmalar. Displeylar.
Suyuq kristallar.

Suyuq kristallar-suyuqlik va kristall xossasiga ega bo’lgan moddalar bo’lib unda bir vaqtning o’zida ham kristallik, ham suyuqlik xususiyatlari namoyon bo’ladi. Ma’lumki moddadarining ko’pchiligi uchta agregat holatda (qattiq, suyuq, gaz) bo’lishi mumkin. Murakkab molekulalarga ega bo’lgan ba’zi organik moddalar yuqoridagi uchta holatdan tashqari to’rtinchi holatda ham bo’lishi mumkin. Ular eritilayotganida oddiy suyuqlikdan farqlanuvchi suyuq kristall fazasi xosil bo’ladi. Mazkur faza kristallning erish haroratidan boshlanib undan yuqori harorat intervalida mavjud bo’ladi. Agar uni ayni shu interval chegarasidan yuqori haroratga qadar qizdirilsa, suyuq kristall oddiy suyuqlikka aylanib qoladi. Suyuq kristallar 1888 yilda Avstriyalik batanik-olim F.Reynitser tomonidan birinchi marta olingan va tadqiq qilingan. F.Reynitser sintez qilgan yangi modda xolesteril benzoat ikkita erish nuqtasiga egadir. Bu qattiq jismning harorati 1450 S ga yetganda, u loyqa suyuqlikka aylanadi. 1790 S haroratda esa suyuqlik tiniqlashib qoladi, ya’ni o’zini optik nuqtai nazardan oddiy suyuqlikdek, masalan suvdek tutadi.
F.Reynitser polyarizatsion mikrosko’p ostida holesteril benzatning loyqa fazasini ko’zatganda u ikkilanma nur sindirishga ega ekanligini aniqladi. Molekulalarning fazoda tartiblanishi odatdagidek to’liq bo’lmasa ham u suyuq kristallar xususiyatiga jiddiy ta’sir ko’rsatadi. Shuning bilan ham ular oddiy suyuqlikdan farq qiladi. Molekula o’qlarining eng oddiy tartiblanishlaridan tashqari, suyuq kristallarning molekulalarida bundan ham murakkab oriyentatsion tartiblanish amalga oshishi ham mumkin. Suyuq kristallarning turlari. Nematik, smektik va xalesterik. Molekulalar o’qlarining tartiblanishining ko’rinishiga qarab suyuq kristallar uch turga bo’linadi: 1. Nematik. Nematik grekcha “nema” so’zidan olingan bo’lib “ip” deganidir. Nematiklar tarkibida mikrosko’pik ipsimon strukturalar mavjud bo’lib ularning oxiri yoxud erkin, yoxud idishning devoriga yopishuvchan bo’ladi. 1930 yilning boshlarida nematik moddalarning umuiy molekulyar strukturasi qarama-qarshi muloxazalarning yuzaga kelishiga sabab bo’ldi. Хuddi shu vaqtda nemis fiziklari Ornshteyn va Kastlar nematik moddadardagi molekulalar butun hajm bo’ylab emas, balki faqat ayrim soxalarda parallel o’qlarga ega bo’lgan gurux yoki “uya” larga to’plangan degan fikrni ilgari surdilar.
Ularning taxminlaricha, har bir uya tarkibida bir millionga yaqin moleklalar joylashgan bo’ladi. Yaqinda Shvetsiyalik olim K.Ozen nematik moddadagi molekulalarning barcha o’qlari bir-biriga parallel, ularning o’zlari esa modda bo’ylab bir xilda joylashganligini isbotladi. Хozirgi vaqtda uya nazariyasi go’yo ishonch qozonmagandek bo’lib turibdi. 2. Smektik. Smektik, grekcha smegma-sovun so’zidan olingan bo’lib, Smektiklar sigarasimon shakldagi molekulalardan tashkil topgan bo’lib u molekulalarning katta o’qlari bir-biriga parallel orintatsiyalangan qatlamlar to’plamini xosil qiladi. Smektik suyuq kristall moddalarning eng ko’p tarqalgan misoli sovun ko’pigidir. Sovun pufaklarining tashqi va ichki sirtlari orasida suv bo’lib u smektik qatlamlardan iborat bo’ladi. Agar pufak siqilsa, suvning molekulalari qatlamdan siqib chiqariladi va u yana qaytadan suyuqlik eritmasiga qaytib o’tadi. Smektik suyuq kristall modda qutblangan yoruғlikni o’tkazadigan mikrosko’p yordamida ko’zatilganda u o’zini optik jixatdan uch o’lchamlik kristalldek, xususan kvarsga o’xshab tutadi. Demak, qatlamga perpendikulyar ravishda tarqalayotgan yoruғlik tezligi qatlamga parallel tarqalayotganiga nisbatan kichik ekan.boshqacha aytganda, molekulalarning o’zun o’qi bo’ylab yoruғlik ko’ndalangiga nisbatan kichik tezlik bilan tarqaladi. Bunday tipdagi kristall strukturalar optik musbat strukturalar deb ataladi. 3. Holesterik. Тarkida holesterik mavjud bo’lgan juda ko’p sondagi birikmalar xolesterik deb ataladi. Хolesterik fazaning xususiyati ko’p jixatidan smektik va nematik fazalarning xususiyatiga o’xshash.
Хolesterik suyuq kristallardagi molekulalar ham smektik suyuq kristallardagi molekulalar kabi qatlamlarga to’planganlar. Ammo har bir qatlamning ichida molekulalar o’qining bir-biriga nisbatan joylashuvi esa nematik fazani eslatadi. Хolesterik molekulalarining o’zun o’qi qatlam tekisligiga parallel bo’lganligi uchun ulardagi qatlamlar juda yupqa bo’ladi. Ma’lumki yoruғlikni qutblanish tekisligini (buruvchi) aylantiruvchi kristall moddalar optik aktiv modda deb ataladi. O’tkazilgan tajribalar xolesterik modda ham optik aktiv modda ekanligini va qutblanish tekisligini 1800 gacha burchakka burishini ko’rsatdi. Хolesterik suyuq kristalining optik xususiyatlaridan yana biri uning doiraviy dixroizmga (ikkilanma nur sindirishda nurlardan biri ikkinchisiga qaraganda ko’proq yetiladi) ega bo’lishidir. Smektik va nematik moddalarga qarama-qarshi xolestik suyuq kristallar optik manfiydirlar. Buning ma’nosi sho’qi molekulyar qatlamlarga perpendikulyar tarqalayotgan yoruғlikning tezligi masimal qiymatga ega. Uchchala suyuq kristall moddalarga xos xususiyat ikkinlanma nur sindirilishining mavjudligidir. Хolesterik holatda modda haroratga qarab, dastlab binafsha, keyin xavorang, keyin ko’k, keyin sariq, qizil va nihoyat infraqizil soxaga o’tganda ular yana rangsizlanadi.
Ҳamma xolesterik suyuq kristallar ham haroratning o’zgarishi bilan bir xil tarzda ta’sirlanmaydi. Masaln ba’zilari o’z rangini faqat qizildan yashilgacha o’zgartiradi. Elektr va magnit maydonlaridagi suyuq kristallarnnig xossalari. Oddiy nematik moddaning molekulalari elektr va magnit maydonda xuddi temir kukunlari kabi ta’sirlashadi: Juda kichik maydonning o’ziyoq molekulalarning o’zun o’qlarini bir-biriga parallel joylashtiradi. Magnit maydoni suyuq kristallarning yopishqoqligini ham o’zgartiradi. Elektr maydoniga joylashtirilgan yupqa suyuq kristall qatlamida difraksion panjaraga o’xshash fazoviy-davriy strukturalar vujudga keladi.
Ma’lum sharoitlarda strukturalar davri va difraksion maksimumlarning intensivligi namunadagi kuchlanishga boғliq bo’lib qoladi. Bu esa boshqariladigan difraksion panjaralar yaratishda foydalanish mumkin.
Katta elektr maydonlarda suyuq kristallarning dastlab tiniq namunasi, yoruғlikni kuchli sochilishi tufayli u xira-loyqa bo’lib qoladi. Elektr maydon olingandan so’ng suyuq kristall o’zining dastalabki holatiga qaytadi. (yopishqoqligi katta bo’lgan smektikdan boshqalari, u tasvirni o’zoq vaqt “eslab” qoladi). Suyuq kristallarni qo’llanilishi. Matritsaviy qurilmalar.
Displeylar.
Хozirgi paytda suyuq kristallar texnikaning turli soxalarida keng qo’llanilmoqda. Ularni ba’zilarini quyida ko’rib o’tamiz. 1. Elektr payvandlovchi uchun maska (niqob). Germaniya firmalaridan biri payvandlovchi uchun yangi maska chiqardi. Unda maskadagi qora oyna, ikkita suyuq kristalldan yasalgan yoruғ yupqa qatlam bilan almashtiriladi. Bu tvist yacheyka bo’lib, u fotoelementdan boshqariladi. Elektr yoy chaqnashi bilan suyuq kristallning molekulalari fotoelementdan berilgan kamandaga ko’ra buriladi va yoruғlikni tamomila o’tkazmaydi. Demak suyuq kristall yacheykaga qo’yilgan kuchlanish ta’sirida molekulalar qayta orentatsiyalanadi. Payvandlash to’xtashi bilanoq molekulalar dastlabki holatiga qaytadi. 2. Тibbiyotda qo’llanilishi. Suyuq kristallar xozirgi paytda bemorlarga tashxis qo’yish uchun ishlatilishi mumkin. Shu maqsadda ultratovushli rentgen yaratildi. Bunda inson a’zosi rentgen nuri bilan emas, balki ultratovush bilan yoritiladi, ultratovush inson uchun mutloq zararsizdir. Bundan tashqari asosiy elementi suyuq kristall yacheykadan iborat bo’lgan asbob yordamida ko’zdan turli masofalarda joylashgan ob’ektlar inson tomonidan qaralganda ko’zning akkomadatsiyasini tadqiq qilish, uning vaqtiy tafsifini va akkomodatsiya jarayonida bo’lishi mumkin bo’lgan patologik o’zgarishlarni o’rganish mumkin. Bu asbobda suyu kristall yacheykasida yoruғlikning dinamik sochlish hodisasidan foydalaniladi, yacheykaning o’zi esa ekran vazifasini bajaradi. 3. Matritsaviy displeylar.
Suyuq kristall yacheyka bitta yoki bir necha misol uchun qo’l soati indikatoridagi har bir yacheykaga boshqaruvchi kuchlanishni alohidao’zatishning muammosi yo’q. Endi qandaydir qurilma uchun millionatrofidagi yacheykalar zarur bo’lsin va bu yacheykalarning har birining tavsiflarini bir-biridan mustaqil boshqarish zaruriyati tuғilgandagi holatini tasavvur etib ko’raylik. Biz televizion ekran yoki displey yaratmoqchi bo’lsak, u holda shunday sharoit tuғilishi mumkin.
Bu holda boshqaruvchi kuchlanishni o’zatish tizimini yaratish muxim muammoga aylanadi. Chunki agar har bir yacheykani kuchlanish o’zatuvchilarini individual kanallar bilan ta’minlasak, u holda televizor ekrani yoki displey uchun yacheykalarga signallarni yetkazuvchi million juft atrofidagi o’tkazgich kerak bo’ladi. Bu esa amalda mumkin emas, demak boshqa yo’lni axtarish kerak. Mana shu yerda enda suyuq kristall yacheykalarni matritsaviy boshqarishi qo’l keladi. Bunda birdaniga juda ko’p sonli yacheykalarni boshqarish amalga oshiriladi. Bunday boshqarishda kuchlanishni o’zatuvchi o’tkazgichlar tizimi ikkita o’zaro perpendikulyar va bir-biridan izolyatsiyalangan parallel o’tkazgichlar tizimlari to’plamidan iborat bo’lib ular kvadratsimon panjarani ya’ni matritsani xosil qiladi. O’zaro perpendikulyar o’tkazgichlar kesishgan joyi suyuq kristall yacheykadan iborat bo’ladi. Demak matritsaviy tizim, yetkazuvchi simlar sonini keskin kamaytirish imkoniyatini beradi. mikrosxema elementlari displey yacheykalari Suyuq kristalli matritsaviy displeylarni va mikroelektron texnikasining ittifoqi xozirda Yaponiyada chiqara boshlanganxozirgi zamon elektron luғatini yuzaga keltirdi. Ular xotirasiga ikki tildagi so’zlar kiritilgan va matritsaviy displey va alfavit klaviatura bilan ta’minlangan oddiy cho’ntak mikrokalkulyator o’lchamidek bo’lgan miniatyuraviy hisoblash mashinasidan iboratdir. Klaviatura bo’yicha bir tildagi so’z terilsa, displeyda shu so’zning boshqa tildagi tarjimasi ko’rinadi. Nazorat savollari 1. Suyuq kristallar 2. Suyuq kristall turlari. Nematik, smektik va holesterik 3. Elektr va magnit maydonlaridagi suyuq kristallarning xossalari 4. Suyuq kristallarni qo’llanilishi matritsaviy displeylar.

4-Mavzu: KATTA ADRON KOLLAYDERI VA UNING ISHLASH PRINSIPI



Reja:


  1. Katta adron kollayderi

  2. Ishlash prinsipi

  3. Tuzilishi

  4. Xulosa

Yüklə 122,16 Kb.

Dostları ilə paylaş:
  1   2




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin