NANO O’LCHAMLI KLASTERLAR Reja: "Nano o'lchamli klasterlar" ifodasi haqida
Nano o’lchamli klasterlar va kristallar
Nanotexnologiya haqida tushuncha
Keyingi o‘n yillikda jahon jamoatchiligi lug‘at boyligiga «nano» so‘zi kirib keldi. Xo‘sh, «nano» nima? Qisqa qilib aytganda, nano milliarddan bir qismdir.
Nanotexnologiya tushunchasi uchun tugal va aniq ifoda yo‘q, ammo mavjud mikrotexnologiya asosida bu o‘lchamlarni nanometrdagi texnologiya deb yuritish mumkin. Shuning uchun mikrodan nanoga o‘tish bu moddani boshqarishdan atomni boshqarishga o‘tish demakdir. Sohaning rivoji deganda esa asosan uchtayo‘nalish tushuniladi:
- o‘lchami atom va molekulalar o‘lchamlari bilan solishtirarli elektron sxemalarni tayyorlash;
- nanomashinalarni loyihalash va ishlab chiqish;
- alohida atom va molekulalarni boshqarish va ulardan alohida mikroob'ektlarni yig‘ish.
Nanomateriallar – nanozarrachalar yoki nanotexnologiyalar yordamida yaratilgan va o’lchamlari juda kichikligi hisobiga i ajoib xusussiyatlarga ega bo’lgan materiallar. Nanomateriallarga hech bo’lmasa bitta o’lchami 1 dan 100 nm oralikda yotgan materiallar tegishli.
Odatdagi o’lchamlar
Bir necha ming yillar davomida odamlar hamma narsalarni ko’zlari o’rgangan me’yor bilan, ya’ni odam bo’yi bilan baholab kelgan. Barcha halqlarda ham o’lcham birligi metr, yoki unga yaqin bo’lgan kattalik bo’lgan.XVII asrda odam ko’zi mikroskop tufayli ming marta kichik ob’yektlarni ko’rib boshlagan. Ammo buyumlarni va mexanizmlarning kichrayishi materiallar va kurilmalarning kichrayishiga bo’liq.
ХХ asrning o’rtasida vakuum lampalar elektronikani rivojlanishiga olib keldi. Ommabop holatda televizorlar ishlab chiqildi.
ХХ asrning o’rtasida o’lchamlar yana ming marta kichraydi – natijada hisoblash mashinalarning imkoniyatlari keskin oshdi. 15 yil ichida 1981 yilda birinchi personal kompyuter yaratildi. Odamzod tarixida internet bilan bog’liq bo’lgan yangi sahifa ochildi –Internet.
Nanofizika va nanotexnologiyalarni asoschisi yirik fizikolim Richard Feynman (1918-1988). Amerika fiziklar jamiyatining majlisida 1959 yilda qilgan “Pastda hali ko’p joy” ma’ruzasida bashorat qilib, qator g’oyalarni oldinga surdi. R.Feynmanni fikri bo’yicha odamlar juda uzoq vaqt davomida yonida bir dun’yo borligini bilmasdan yashab kelgan. Biror narsani ko’rmasak u bilan ishla olmaymiz. 1993 yildan boshlab R.Feynman nomidagi mukofot har yili nanotexnologiyalar sohasida buyuk yutuqlarga erishganlarga beriladi. Mikroob’yektlar yaratishni rag’batlantirish uchun R.Feynman 1mm dan kichik elektromotor yaratganiga 1000$ mukofot e’lon qilgan. Va ko’p vaqt o’tmasdan bunday motor yaratilgan.
Bugungi kunga qadar (2018-2019) dunyoda nanotexnologiyalar va nanoproduktsiya nima ekanligini tasvirlaydigan yagona standart yo'q.
"Nanotexnologiya" tushunchasiga quyidagilar kiradi:
Neyrotexnologiya sohasi yarim asrga ega, ammo u faqat so'nggi 20 yil ichida etuklikka erishdi. Asosiy voqea olimlarga tajribalar paytida miyaning ishini bevosita kuzatishga imkon beradigan neyroimagingning paydo bo'lishi edi.
2. Neyrotexnologiyalar jamiyatga jiddiy ta'sir ko'rsatdi, garchi ularning mavjudligi shunchalik ahamiyatsiz bo'lsa-da, ularning deyarli barchasini sezmaydilar.
Dori-darmonlardan miya skanerlashigacha, neyrotexnologiyalar rivojlangan mamlakatlarning deyarli barcha aholisiga to'g'ridan-to'g'ri yoki bilvosita ta'sir qiladi, ular depressiya, uyqusizlik, diqqat etishmovchiligining giperaktivligini buzish, antiviruslarga qarshi vositalar yoki saraton kasalligini skanerlash, insultni tiklash va boshqalar.
Sanoat rivojlanib borgan sari, bu jamiyatning shaxsiyat va turmush tarziga ta'sir qiladigan miyaning ko'plab imkoniyatlarini boshqarish va ulardan foydalanishga imkon beradi. Umumiy texnologiya allaqachon buni amalga oshirishga harakat qilmoqda; Brain Age kabi o'yinlar va miyaning faoliyatini yaxshilashga qaratilgan Fast ForWord kabi dasturlar neyrotexnologiyalar toifasiga kiradi.
Hozirgi vaqtda fan miyaning tuzilishi va faoliyatining deyarli barcha jihatlarini tasvirlashga qodir. Bu depressiyani, giperaktivlikni, uyqusizlikni va boshqalarni boshqarishga yordam beradi. Terapiyada bu qon tomir qurbonlariga harakatlarni muvofiqlashtirishni yaxshilashga, miya faoliyatini yaxshilashga, epilepsiya xurujlari sonini kamaytirishga, vosita funktsiyalari buzilgan bemorlarga (Parkinson, Xantington kasalligi, ALS) yordam beradi va xayoliy og'riqlardan xalos bo'lishga yordam beradi.
Neyrotexnologiyaning rivojlanishi nevrologik muammolari bo'lgan bemorlarni reabilitatsiya qilish uchun ko'plab yangi usullarni va'da qilmoqda. Neyrotexnologik inqilob 2007 yilda boshlangan "Fikrlash o'n yilligi" tashabbusini amalga oshirdi [4]. Bundan tashqari, miyada aql va ongning paydo bo'lishi mexanizmlarini aniqlashga imkon beradi.
Magnit-rezonans tomografiya (MRI) miyaning topologik va signal tuzilmalarini skanerlash, shuningdek miya faoliyatini vizual tekshirish uchun ishlatiladi. MRGdan foydalanish nevrologiyada juda katta oqibatlarga olib keladi. Bu, ayniqsa funktsional MRI (fMRI) paydo bo'lganidan keyin fikrlashni o'rganishda muhim ahamiyatga ega [5]. Funktsional MRI miya mintaqalari faollashuvining kislorod miqdorining oshishiga bog'liqligini o'lchaydi.
Texnologiya miyaning turli sohalari va sohalari o'rtasida assotsiativ ulanishlar xaritasini yaratishga imkon beradi, shu jumladan yangi joylar va maydonlarni aniqlaydi. FMRI tufayli bemorlar real vaqtda miyalarining stimulga qanday javob berishini ko'rishlari mumkin va shu bilan vizual mulohazalarni olishadi.
Kompyuter tomografiyasi (KT) 1970 yildan beri ishlatiladigan yana bir miyani skanerlash texnologiyasidir. Akademik muhitda kompyuter tomografiyasining ko'plab funktsiyalari hozirda MRGga o'tmoqda, ammo avvalgisi sog'liqni saqlash muassasalarida miya faoliyati va shikastlanishini aniqlash uchun ishlatiladi. Rentgen nurlari yordamida olimlar miyada radioaktiv yorliqlarni o'rnatadilar, ular faoliyat nuqtalarini miyada aloqalarni o'rnatish vositasi sifatida ko'rsatadilar, shuningdek, miyaga uzoq muddatli shikast etkazadigan (masalan, anevrizma yoki saraton kabi) ko'plab shikastlanishlar / kasalliklarni aniqlaydilar [5].
Pozitron emissiya tomografiyasi (PET) bu pozitron nurlanish manbalari (glyukoza kabi) bo'lgan markerlarni mahkamlash uchun tuzilgan yana bir tasvirlash usuli. PET tez-tez ishlatiladi, chunki bu metabolik jarayonlarni aniqlashga imkon beradi: miyaning muammoli joylari ko'proq glyukoza iste'mol qiladi.
Transkranial magnit stimulyatsiya
Transkranial magnit stimulyatsiya (TMS) aslida miyaning bevosita magnit stimulyatsiyasi. Elektr toklari va magnit maydonlari bir-biri bilan chambarchas bog'liq bo'lganligi sababli, miyaning ma'lum joylariga magnit impulslarining ta'siri oldindan taxmin qilingan ta'sirga erishishga imkon beradi. Tadqiqotning ushbu sohasi hozirgi vaqtda ushbu texnologiyani yaxshiroq tushunishning potentsial foydasi tufayli katta e'tiborni jalb qilmoqda.
Mikropolyarizatsiya - bu kichik elektrodlar orqali miyada qiziqish zonasiga to'g'ridan-to'g'ri qo'llaniladigan past kuchlanishning to'g'ridan-to'g'ri oqimidan foydalanadigan neyrostimulyatsiya shakli. Dastlab miya jarohatlari, masalan, qon tomirlari bo'lgan bemorlarga yordam berish uchun ishlab chiqilgan. Shu bilan birga, sog'lom kattalarda mikropolyarizatsiyani qo'llash bo'yicha tadqiqotlar shuni ko'rsatdiki, texnik miyaning stimulyatsiya qilingan maydoniga qarab turli muammolarni hal qilish uchun bilim qobiliyatini oshirishi mumkin.
Mikropolyarizatsiya lingvistik va matematik qobiliyatlarni yaxshilash uchun ishlatilgan (garchi uning shakllaridan biri matematikani o'rganishni sekinlashtirsa), diqqatni rivojlantirish, xotirani yaxshilash va muvofiqlashtirish.
Nanotexnologiyaning so'nggi yutuqlari. Kelajak kompyuterlari.
Zamonaviy kompyuterning miyasi-markaziy ishlov berish birligi, tasodifiy kirish va faqat o'qish uchun mo'ljallangan xotira, yordamchi va periferik qurilmalar. Asosiy mantiqiy (shu jumladan hisoblash) operatsiyalarni markaziy protsessor bajaradi. U buni mikroelektron davrlarning aqlli kombinatsiyalari yordamida amalga oshiradi. LSI (keng ko'lamli integral mikrosxemalar) ning har xil mantiq elementlari bir xil oddiy mantiq hujayralaridan - bitlardan tuzilgan. Bit - bu ikkita barqaror holatda bo'lishi mumkin bo'lgan elementar mikroelektron tetik xujayrasi. Ulardan biri "0" kodiga (ma'lumot etishmasligi), ikkinchisiga "1" kodiga (uning mavjudligi) mos keladi. Texnologiyalar rivojlanishi bilan mikrosxemalarning yanada miniatyuralanishi, ularning zichlashuvi, ma'lumotlarni uzatish, saqlash va qayta ishlashning optik usullari joriy etildi.
Zamonaviy kompyuterlar tez sur'atlar bilan tezlashmoqda, ammo olimlar ikkilik tizimdan foydalanish imkoniyatlari chegarasiga yaqinlashish yo'lini topganga o'xshaydi. Bu usul kvant tushirish yoki qubit bo'lishi mumkin, bu ikkita asosiy holatga ega bo'lgan kvant zarrachasi, ular 0 va 1 bilan belgilanadi, ular atom yadrosi va elektronning aylanishining yuqoriga va pastga yo'nalishiga mos kelishi mumkin. Ulardan foydalanish kompyuter texnologiyalarida haqiqiy inqilob qilishi mumkin: bir necha kilokubitli xotiraga ega kompyuter nazariy jihatdan klassik kompyuterni terabaytli xotira bilan almashtirishi mumkin.
Nanokompyuterlar. Nanotexnologiya darajasiga o'tish bilan kompyuterning ruxsat etilgan minimal hajmini hujayra ostiga tushirish mumkin bo'ladi. Sun'iy tizimlarda axborotni saqlash zichligi allaqachon inson irsiyatini kodlovchi axborot zichligidan oshib ketishi mumkin.
Nanokompyuterlar bir vaqtning o'zida bir necha yo'nalishda rivojlanib, kvant mantig'i, klassik mantiq, nevrologiya, shuningdek, hozirgi vaqtda aniqlash qiyin bo'lgan genetik, molekulyar biologik, molekulyar mexanik va boshqalarga asoslangan ma'lumotlarni taqdim etishning turli usullarini amalga oshiradi.
Koʻpgina manbalar, birinchi navbatda, ingliz tilida, keyinchalik nanotexnologiya deb ataladigan usullarning birinchi eslatmasini Richard Feynmanning 1959-yilda Kaliforniya Texnologiya Institutida Kaliforniya Texnologiya Institutida qilgan mashhur „Pastda juda koʻp joylar bor“ nomli nutqi bilan bogʻlaydi. Amerika jismoniy shaxslar jamiyatining yillik yigʻilishida Richard Feynman tegishli oʻlchamdagi manipulyator yordamida atomlarni mexanik ravishda koʻchirish mumkinligini taklif qildi.
U ushbu manipulyatorni quyidagi tarzda qilishni taklif qildi. Oʻz nusxasini yaratadigan mexanizmni yaratish kerak, faqat kichikroq tartib. Yaratilgan kichikroq mexanizm yana oʻz nusxasini yaratishi kerak, yana kichikroq kattalik tartibini va mexanizmning oʻlchamlari bitta atom tartibining oʻlchamlariga mos kelguncha davom etishi kerak. Shu bilan birga, ushbu mexanizmning tuzilishiga oʻzgartirishlar kiritish kerak boʻladi, chunki makrokosmosda harakat qiluvchi tortishish kuchlari kamroq va kamroq taʼsir qiladi va molekulalararo oʻzaro taʼsir kuchlari va Van der Vaals kuchlari tobora kuchayib boradi. Oxirgi bosqich — hosil boʻlgan mexanizm oʻz nusxasini alohida atomlardan yigʻadi. Aslida, bunday nusxalar soni cheksizdir, qisqa vaqt ichida bunday mashinalarning juda koʻp sonini yaratish mumkin boʻladi. Ushbu mashinalar makro narsalarni xuddi shu tarzda, atomma-atom yigʻish imkoniyatiga ega boʻladi.Bunday robotlarga (nanorobotlarga) faqat kerakli miqdordagi molekulalar va energiya berilishi va kerakli narsalarni yigʻish dasturini yozish kerak boʻladi. Hozirgacha hech kim bu imkoniyatni inkor eta olmagan, ammo bunday mexanizmlarni yaratishga hali hech kim erishmagan. Shunday qilib R. Feynman oʻzi tasavvur qilgan manipulyatorni tasvirlab berdi.
Obyektlarni atom darajasida oʻrganish imkoniyati haqidagi birinchi taxminlarni 1704-yilda nashr etilgan Isaak Nyutonning „Optiklar“ kitobida topish mumkin. Kitobda Nyuton kelajakdagi mikroskoplar qachondir „ korpuskulalar sirlarini“ oʻrganishga qodir boʻlishiga umid bildiradi.
„Nanotexnologiya“ atamasi birinchi marta 1974-yilda Norio Taniguchi tomonidan ishlatilgan. U bu atamani bir necha nanometr oʻlchamdagi mahsulotlar ishlab chiqarish deb atadi. 1980-yillarda bu atama Erik K. Drexler oʻzining kitoblarida: Nanotexnologiya va nanotizimlarning kelayotgan davri, molekulyar mashinalar, ishlab chiqarish va hisoblash soʻzlarini ishlatdi. Uning tadqiqotida asosiy oʻrinni matematik hisob-kitoblar tashkil etgan boʻlib, ular yordamida oʻlchamlari bir necha nanometr boʻlgan qurilmaning ishini tahlil qilish mumkin edi.
Kichkinalashtirishning zamonaviy tendentsiyasi shuni koʻrsatdiki, agar moddaning juda kichik zarrachasi hosil qilinsa, bu holda modda butunlay yangi xususiyatlarga ega boʻlishi mumkin. Oʻlchamlari 1 dan 100 nanometrgacha boʻlgan zarralar odatda " nanozarrachalar " deb ataladi. Masalan, baʼzi materiallarning nanozarralari juda yaxshi katalitik va adsorbsion xususiyatlarga ega ekanligi maʼlum boʻldi.
Nanozarrachalarning koʻpgina fizik-kimyoviy xususiyatlari, quyma materiallardan farqli oʻlaroq, ularning hajmiga bogʻliq boʻlganligi sababli, soʻnggi yillarda eritmalardagi nanozarrachalar hajmini oʻlchash usullariga katta qiziqish bor.
Nanometrlar tartibidagi zarralar yoki nanozarrachalar, ilmiy doiralarda deyilganidek, ulardan foydalanishga katta xalaqit beradigan bitta xususiyatga ega. Ular aglomeratlar hosil qilishi mumkin, yaʼni bir-biriga yopishadi. Nanozarrachalar keramika, metallurgiya sohalarida istiqbolli boʻlganligi sababli, bu muammoni hal qilish kerak. Mumkin boʻlgan yechimlardan biri ammoniy sitrat (suvli eritma), imidazolin, oleyk spirti (suvda erimaydigan) kabi dispersantlardan foydalanishdir.
Nanomateriallar
Grafen
Uglerod nanotrubalari
Fullerenlar
Nanokristallar
Aerojellar
Aerografiya
Nanoakkumulyatorlar
Lotus effektli yuzalar
Nanomateriallarni olish usullari
Nanomateriallarni olishning mavjud usullari qatoriga quyidagilar kiradi: fullerenlarni, uglerod nanotrubalarini olish uchun plazmadagi grafit elektrodlari orasidagi elektr yoy razryadidan foydalanish, fullerenlarni yuqori haroratda olishning gaz fazali usuli, yuqori haroratda uglevodorodlarning parchalanishi va katalizator, chang texnologiyasi, presslash va deformatsiya usullari, plyonka qoplamalarini fizik va kimyoviy choʻktirish usullari.
Tadqiqot usullari
Nanotexnologiya fanlararo fan boʻlganligi sababli, ilmiy tadqiqotlarni oʻtkazish uchun „klassik“ biologiya, kimyo va fizika kabi usullardan foydalaniladi. Nanotexnologiya sohasidagi nisbatan yangi tadqiqot usullaridan biri bu skanlovchi zondli mikroskopik usuli. Hozirgi vaqtda tadqiqot laboratoriyalarida nafaqat „klassik“ zond mikroskoplari, balki optik va elektron mikroskoplar bilan birgalikda qoʻllaniladi.
Nanotexnologiyaning amaliy jihati atomlar, molekulalar va nanozarrachalarni yaratish, qayta ishlash va manipulyatsiya qilish uchun zarur boʻlgan qurilmalar va ularning tarkibiy qismlarini ishlab chiqarishni oʻz ichiga oladi. Nanomaterial boʻlishi uchun kamida bitta chiziqli oʻlchami 100 nm dan kam boʻlishi zarur.
Nanotexnologiyalar anʼanaviy fanlardan sifat jihatidan farq qiladi, chunki bunday shkalalarda materiya bilan ishlashning odatiy makroskopik texnologiyalari koʻpincha qoʻllanilmaydi va odatdagi shkalada ahamiyatsiz boʻlgan mikroskopik hodisalar sezilarli darajada kuchayadi.
Nanotexnologiya va xususan, molekulyar texnologiya yangi juda kam oʻrganilgan fanlardir. Bu sohada bashorat qilingan asosiy kashfiyotlar hali amalga oshirilmagan. Shunga qaramay, olib borilayotgan izlanishlar allaqachon amaliy natijalarni bermoqda.
Nanotexnologiyada ilgʻor fan yutuqlaridan foydalanish uni yuqori texnologiya sifatida tasniflash imkonini beradi.