©
200
6
Nature Publishing Group
and a role for non-neuronal cells as modulators of neuron
death. What other aspects are likely to be important in
ALS? Looking ahead, we anticipate that several themes
could emerge: disturbances of vesicular trafficking and
axonal transport and further delineation of the ionic basis
for excitotoxicity and the mechanisms whereby neurons
and support cells compensate for this; more elaborate
descriptions of the cellular defences against misfolded
proteins; and, in SALS, approaches to detecting extrinsic
causative factors (for example, infections and toxins). At
present, it seems unlikely that the diverse hypotheses can
be combined into a single explanation of ALS. Rather, it
is likely that several seemingly disparate factors can trig-
ger motor neuron death as a final common pathway. If
there are multiple pathways involved in motor neuron
degeneration, there are also multiple targets for therapy. It
is beyond the scope of this article to summarize the litera-
ture on therapeutic trials in human and rodent ALS (for a
review, see
REF. 179
). However, two lessons are emerging.
First, the most effective therapies in ALS mice have deliv-
ered the beneficial agents directly to motor neurons. For
example, insulin-like growth factor extended survival in
the G93A-SOD1 mice when expressed from the type 2
serotype of adeno-associated virus that, in turn, had been
carried to the motor neuron by retrograde axonal trans-
port after intramuscular injection
180
. Second, spectacular
benefits can be achieved with strategies that inactivate the
mutant, disease-causing alleles
181,182
. The most compel-
ling approach to attenuating the diverse, often synergis-
tic downstream pathological processes is to shut off the
production of the inciting, upstream protein, whether by
RNA interference
181–185
, antisense oligonucleotides
186
or
some other method. Given contemporary advances in
strategies to attenuate gene expression, it is striking that
SOD1-mediated ALS, surely the most devastating form
of this disease, affecting one-half of all adults in every
affected family, might well be the first form of this hor-
rific disease to be treated successfully.
1.
Mulder, D. W. Clinical limits of amyotrophic lateral
sclerosis. Adv. Neurol. 36, 15–22 (1982).
2.
McGuire, V., Longstreth, W. T. Jr, Koepsell, T. D. &
van Belle, G. Incidence of amyotrophic lateral sclerosis
in three counties in western Washington state.
Neurology 47, 571–573 (1996).
3.
Mitsumoto, H., Chad, D. A. & Pioro, E. P.
Amyotrophic
Lateral Sclerosis (Oxford Univ. Press, New York, 1998).
4.
Kurtzke, J. K. L. in
Clinical Neurology (ed. Joynt, R.)
(Lippincott, Philadelphia, 1989).
5.
Kurtzke, J. F. Risk factors in amyotrophic lateral
sclerosis.
Adv. Neurol. 56, 245–270 (1991).
6.
Ince, P. G. in
Amyotrophic Lateral Sclerosis (eds
Brown, R. H. Jr, Meininger, V. & Swash, M.)
83–112 (Martin Dunitz, London, 2000).
7.
Cleveland, D. W. & Rothstein, J. D. From Charcot to
Lou Gehrig: deciphering selective motor neuron death
in ALS. Nature Rev. Neurosci. 2, 806–819 (2001).
8.
Rowland, L. P. in
Amyotrophic Lateral Sclerosis and
Other Motor Neuron Diseases (ed. Rowland, L. P.)
3–23 (Raven, 1992).
9.
MacGowan, D. J., Scelsa, S. N. & Waldron, M. An ALS-
like syndrome with new HIV infection and complete
response to antiretroviral therapy. Neurology 57,
1094–1097 (2001).
10. Steele, A. J. et al. Detection of serum reverse
transcriptase activity in patients with ALS and
unaffected blood relatives. Neurology 64, 454–458
(2005).
11. Rosen, D. R. et al. Mutations in Cu/Zn superoxide
dismutase gene are associated with familial
amyotrophic lateral sclerosis. Nature 362, 59–62
(1993).
Describes the hallmark discovery that mutations
in SOD1 cause ALS in a subset of familial cases.
12. Yang, Y. et al. The gene encoding alsin, a protein
with three guaninenucleotide exchange factor
domains, is mutated in a form of recessive
amyotrophic lateral sclerosis. Nature Genet. 29,
160–165 (2001).
13. Hadano, S. et al. A gene encoding a putative GTPase
regulator is mutated in familial amyotrophic lateral
sclerosis 2. Nature Genet. 29, 166–173 (2001).
14. Chance, P. F. Linkage of the gene for an autosomal
dominant form of juvenile amyotrophic lateral
sclerosis to chromosome 9q34. Am. J. Hum. Genet.
62, 633–640 (1998).
15. Chen, Y. Z. et al. DNA/RNA helicase gene mutations
in a form of juvenile amyotrophic lateral sclerosis
(ALS4). Am. J. Hum. Genet. 74, 1128–1135
(2004).
16. Nishimura, A. L. et al. A mutation in the vesicle-
trafficking protein VAPB causes late-onset spinal
muscular atrophy and amyotrophic lateral sclerosis.
Am. J. Hum. Genet. 75, 822–831 (2004).
17. Puls, I. et al. Mutant dynactin in motor neuron
disease. Nature Genet. 33, 455–456 (2003).
References 12–17 describe ALS-causing gene
mutations.
18. Ruddy, D. M. et al. Two families with familial
amyotrophic lateral sclerosis are linked to a novel
locus on chromosome 16q. Am. J. Hum. Genet. 73,
390–396 (2003).
19. Hentati, A. et al. Linkage of a commoner form of
recessive amyotrophic lateral sclerosis to chromosome
15q15-q22 markers. Neurogenetics 2, 55–60
(1998).
20. Sapp, P. et al. Identification of three novel mutations
in the gene for Cu/Zn superoxide dismutase in
patients with familial amyotrophic lateral sclerosis.
Neuromuscul. Disord. 5, 353–357 (1995).
21. Abalkhail, H., Mitchell, J., Habgood, J., Orrell, R. &
de Belleroche, J. A new familial amyotrophic lateral
sclerosis locus on chromosome 16q12.1–16q12.2.
Am. J. Hum. Genet. 73, 383–389 (2003).
22. Hong, S. et al. X-linked dominant locus for late-onset
familial amyotrophic lateral sclerosis. Soc. Neurosci.
Abstr. 24, 478 (1998).
23. Hand, C. K. et al. A novel locus for familial
amyotrophic lateral sclerosis, on chromosome 18q.
Am. J. Hum. Genet. 70, 251–256 (2002).
24. Morita, M. et al. A locus on chromosome 9p confers
susceptibility to ALS and frontotemporal dementia.
Neurology 66, 839–844 (2006).
25. Hosler, B. A. et al. Linkage of familial amyotrophic
lateral sclerosis with frontotemporal dementia to
chromosome 9q21–q22. JAMA 284, 1664–1669
(2000).
26. Andersen, P. M. et al. Sixteen novel mutations in the
Cu/Zn superoxide dismutase gene in amyotrophic
lateral sclerosis: a decade of discoveries, defects and
disputes. Amyotroph. Lateral Scler. Other Motor
Neuron Disord. 4, 62–73 (2003).
27. Andersen, P. M. et al. Phenotypic heterogeneity in
motor neuron disease patients with CuZn-superoxide
dismutase mutations in Scandinavia. Brain 120,
1723–1737 (1997).
28. Radunovic, A. et al. Copper and zinc levels in familial
amyotrophic lateral sclerosis patients with Cu/Zn gene
mutations. Ann. Neurol. 42, 130–131 (1997).
29. Yamanaka, K. & Cleveland, D. W. Determinants of
rapid disease progression in ALS. Neurology 65,
1859–1860 (2005).
30. Cudkowicz, M. E., McKenna-Yasek, D., Chen, C.,
Hedley-Whyte, E. T. & Brown, R. H. Jr. Limited
corticospinal tract involvement in amyotrophic lateral
sclerosis subjects with the A4V mutation in the
copper/zinc superoxide dismutase gene [see
comments]. Ann. Neurol. 43, 703–710 (1998).
31. Andersen, P. M. et al. Autosomal recessive adult-
onset amyotrophic lateral sclerosis associated with
homozygosity for Asp90Ala CuZn-superoxide
dismutase mutation. A clinical and genealogical
study of 36 patients. Brain 119, 1153–1172
(1996).
32. Soares, M. L. et al. Haplotypes and DNA sequence
variation within and surrounding the transthyretin
gene: genotype-phenotype correlations in familial
amyloid polyneuropathy (V30M) in Portugal and
Sweden. Eur. J. Hum. Genet. 12, 225–237 (2004).
33. Topp, J. D., Gray, N. W., Gerard, R. D. &
Horazdovsky, B. F. Alsin is a Rab5 and Rac1 guanine
nucleotide exchange factor. J. Biol. Chem. 23,
24612–24623 (2004).
34. Otomo, A. et al. ALS2, a novel guanine nucleotide
exchange factor for the small GTPase Rab5, is
implicated in endosomal dynamics. Hum. Mol. Genet.
12, 1671–1687 (2003).
35. Kanekura, K. et al. Alsin, the product of ALS2 gene,
suppresses SOD1 mutant neurotoxicity through
RhoGEF domain by interacting with SOD1 mutants.
J. Biol. Chem. 279, 19247–19256 (2004).
36. Panzeri, C. et al. The first ALS2 missense mutation
associated with JPLS reveals new aspects of alsin
biological function. Brain 129, 1710–1719
(2006).
37. Yamanaka, K. et al. Unstable mutants in the
peripheral endosomal membrane component ALS2
cause early-onset motor neuron disease. Proc. Natl
Acad. Sci. USA 100, 16041–16046 (2003).
38. Cai, H. et al. Loss of ALS2 function is insufficient to
trigger motor neuron degeneration in knock-out mice
but predisposes neurons to oxidative stress.
J. Neurosci. 25, 7567–7574 (2005).
39. Hadano, S. et al. Mice deficient in the Rab5 guanine
nucleotide exchange factor ALS2/alsin exhibit age-
dependent neurological deficits and altered
endosome trafficking. Hum. Mol. Genet. 15, 233–250
(2006).
40. Chen, Y. Z.
et al. Senataxin, the yeast Sen1p
orthologue: characterization of a unique protein in
which recessive mutations cause ataxia and dominant
mutations cause motor neuron disease. Neurobiol.
Dis. 23, 97–108 (2006).
41. Skibinski, G. et al. Mutations in the endosomal
ESCRTIII-complex subunit CHMP2B in
frontotemporal dementia. Nature Genet. 37,
806–808 (2005).
42. Comi, G. P. et al. Cytochrome c oxidase subunit I
microdeletion in a patient with motor neuron disease.
Ann. Neurol. 43, 110–116 (1998).
43. Borthwick, G. M. et al. Motor neuron disease in a
patient with a mitochondrial tRNAIle mutation. Ann.
Neurol. 59, 570–574 (2006).
44. Lambrechts, D. et al. VEGF is a modifier of
amyotrophic lateral sclerosis in mice and humans and
protects motoneurons against ischemic death. Nature
Genet. 34, 383–394 (2003).
45. Van Vught, P. W. et al. Lack of association between
VEGF polymorphisms and ALS in a Dutch population.
Neurology 65, 1643–1645 (2005).
46. Greenway, M. J. et al. A novel candidate region for
ALS on chromosome 14q11.2. Neurology 63,
1936–1938 (2004).
47. Al-Chalabi, A. et al. Deletions of the heavy
neurofilament subunit tail in amyotrophic lateral
sclerosis. Hum. Mol. Genet. 8, 157–164 (1999).
R E V I E W S
720
|
SEPTEMBER 2006
|
VOLUME 7
www.nature.com/reviews/neuro
©
200
6
Nature Publishing Group
48. Figlewicz, D. A. et al. Variants of the heavy
neurofilament subunit are associated with the
development of amyotrophic lateral sclerosis. Hum.
Mol. Genet. 3, 1757–1761 (1994).
49. Tomkins, J. et al. Novel insertion in the KSP region of
the neurofilament heavy gene in amyotrophic lateral
sclerosis (ALS). Neuroreport 9, 3967–3970 (1998).
50. Corcia, P. et al. Abnormal SMN1 gene copy number is
a susceptibility factor for amyotrophic lateral sclerosis.
Ann. Neurol. 51, 243–246 (2002).
51. Veldink, J. H. et al. Homozygous deletion of the
survival motor neuron 2 gene is a prognostic factor in
sporadic ALS. Neurology 56, 749–752 (2001).
52. Reaume, A. et al. Motor neurons in Cu/Zn superoxide
dismutase-deficient mice develop normally but exhibit
enhanced cell death after axonal injury. Nature Genet.
13, 43–47 (1996).
53. Gurney, M. Mutant mice, Cu, Zn superoxide
dismutase, and motor neuron degeneration. Science
266, 1586 (1994).
The first description of the transgenic mouse model
of ALS.
54. Cleveland, D. W., Laing, N., Hurse, P. V. &
Brown, R. H. Jr. Toxic mutants in Charcot’s sclerosis
[letter; comment]. Nature 378, 342–343 (1995).
55. Beckman, J. S., Carson, M., Smith, C. D. &
Kuppenol, W. H. ALS, SOD, and peroxynitrite. Nature
364, 584 (1993).
56. Wiedau-Pazos, M. et al. Altered reactivity of
superoxide dismutase in familial amyotrophic lateral
sclerosis. Science 271, 515–518 (1996).
57. Estevez, A. G. et al. Induction of nitric oxide-
dependent apoptosis in motor neurons by zinc-
deficient superoxide dismutase. Science 286,
2498–2500 (1999).
58. Andrus, P. K., Fleck, T. J., Gurney, M. E. & Hall, E. D.
Protein oxidative damage in a transgenic mouse
model of familial amyotrophic lateral sclerosis.
J. Neurochem. 71, 2041–2048 (1998).
59. Hall, E., Andrus, P., Oostveen, J., Fleck, T. & Gurney, M.
Relationship of oxygen radical-induced lipid
peroxidative damage to disease onset and progression
in a transgenic model of familial ALS. J. Neurosci. Res.
53, 66–77 (1998).
60. Bruijn, L. et al. Elevated free nitrotyrosine levels but
not protein-bound nitrotyrosine or hydroxyl radicals,
throughout amyotrophic lateral sclerosis (ALS)-like
disease implicate tyrosine nitration as an aberrant
in vivo property of one familial ALS-liked superoxide
dismutase 1 mutant. Proc. Natl Acad. Sci. USA 94,
7606–7611 (1997).
61. Bruijn, L. I. et al. Aggregation and motor neuron toxicity
of an ALS-linked SOD1 mutant independent from wild-
type SOD1. Science 281, 1851–1854 (1998).
62. Jaarsma, D. et al. Human Cu/Zn superoxide dismutase
(SOD1) overexpression in mice causes mitochondrial
vacuolization, axonal degeneration, and premature
motoneuron death and accelerates motoneuron
disease in mice expressing a familial amyotrophic
lateral sclerosis mutant SOD1. Neurobiol. Dis. 7,
623–643 (2000).
63. Deng, H. X. et al. Conversion to the amyotrophic
lateral sclerosis phenotype is associated with
intermolecular linked insoluble aggregates of SOD1 in
mitochondria. Proc. Natl Acad. Sci. USA 103,
7142–7147 (2006).
64. Wong, P. C. et al. Copper chaperone for superoxide
dismutase is essential to activate mammalian Cu/Zn
superoxide dismutase. Proc. Natl Acad. Sci. USA 97,
2886–2891 (2000).
65. Wang, J. et al. Copper-binding-site-null SOD1 causes
ALS in transgenic mice: aggregates of non-native
SOD1 delineate a common feature. Hum. Mol. Genet.
12, 2753–2764 (2003).
66. Ripps, M. E., Huntley, G. W., Hof, P. R., Morrison, J. H.
& Gordon, J. W. Transgenic mice expressing an altered
murine superoxide dismutase gene provide an animal
model of amyotrophic lateral sclerosis. Proc. Natl
Acad. Sci. USA 92, 689–693 (1995).
67. Bush, A. I. Is ALS caused by an altered oxidative
activity of mutant superoxide dismutase? Nature
Neurosci. 5, 919; author reply 919–920 (2002).
68. Jonsson, P. A. et al. Disulphide-reduced superoxide
dismutase-1 in CNS of transgenic amyotrophic lateral
sclerosis models. Brain 129, 451–464 (2006).
69. Johnston, J. A., Dalton, M. J., Gurney, M. E. &
Kopito, R. R. Formation of high molecular weight
complexes of mutant Cu,Zn-superoxide dismutase in
a mouse model for familial amyotrophic lateral
sclerosis. Proc. Natl Acad. Sci. USA 97,
12571–12576 (2000).
70. Wang, J., Xu, G. & Borchelt, D. R. High molecular
weight complexes of mutant superoxide dismutase 1:
age-dependent and tissue-specific accumulation.
Neurobiol. Dis. 9, 139–148 (2002).
71. Ray, S. S. et al. An intersubunit disulfide bond prevents
in vitro aggregation of a superoxide dismutase-1
mutant linked to familial amytrophic lateral sclerosis.
Biochemistry 43, 4899–4905 (2004).
72. Matsumoto, G., Kim, S. & Morimoto, R. I. Huntingtin
and mutant SOD1 form aggregate structures with
distinct molecular properties in human cells. J. Biol.
Chem. 281, 4477–4485 (2006).
73. Sato, T. et al. Rapid disease progression correlates
with instability of mutant SOD1 in familial ALS.
Neurology 65, 1954–1957 (2005).
74. Lindberg, M. J., Bystrom, R., Boknas, N.,
Andersen, P. M. & Oliveberg, M. Systematically
perturbed folding patterns of amyotrophic lateral
sclerosis (ALS)-associated SOD1 mutants. Proc. Natl
Acad. Sci. USA 102, 9754–9759 (2005).
75. Shinder, G. A., Lacourse, M.-C., Minotti, S. & Durham,
H. D. Mutant cu/zn superoxide dismutase proteins
have altered solubility and interact with heat shock/
stress proteins in models of amyotrophic lateral
sclerosis. J. Biol. Chem. 276, 12791–12796 (2001).
76. Pasinelli, P. et al. Amyotrophic lateral sclerosis-
associated SOD1 mutant proteins bind and aggregate
with Bcl-2 in spinal cord mitochondria. Neuron 43,
19–30 (2004).
77. Guegan, C. & Przedborski, S. Programmed cell death
in amyotrophic lateral sclerosis. J. Clin. Invest. 111,
153–161 (2003).
78. Durham, H., Roy, J., Dong, L. & Figlewicz, D.
Aggregation of mutant Cu/Zn superoxide dismutase
proteins in a culture model of ALS. J. Neuropath. Exp.
Neurol. 56, 523–530 (1997).
79. Pasinelli, P., Borchelt, D. R., Houseweart, M. K.,
Cleveland, D. W. & Brown, R. H. Jr. Caspase-1 is
activated in neural cells and tissue with amyotrophic
lateral sclerosis-associated mutations in copper-zinc
superoxide dismutase. Proc. Natl Acad. Sci. USA 95,
15763–15768 (1998).
80. Pasinelli, P., Houseweart, M. K., Brown, R. H. Jr &
Cleveland, D. W. Caspase-1 and -3 are sequentially
activated in motor neuron death in Cu,Zn superoxide
dismutase-mediated familial amyotrophic lateral
sclerosis. Proc. Natl Acad. Sci. USA 97,
13901–13906 (2000).
81. Vukosavic, S. et al. Delaying caspase activation by Bcl-
2: a clue to disease retardation in a transgenic mouse
model of amyotrophic lateral sclerosis. J. Neurosci.
20, 9119–9125 (2000).
82. Li, M. et al. Functional role of caspase-1 and caspase-3
in an ALS transgenic mouse model. Science 288,
335–339 (2000).
83. Vukosavic, S., Dubois-Dauphin, M., Romero, N. &
Przedborski, S. Bax and Bcl-2 intercation in a
transgenic mouse model of familial amyotrophic
lateral sclerosis. J. Neurochem. 73, 2460–2468
(1999).
84. Bacman, S. R., Bradley, W. G. & Moraes, C. T.
Mitochondrial involvement in amyotrophic lateral
sclerosis: trigger or target? Mol. Neurobiol. 33,
113–131 (2006).
85. Boston-Howes, W. et al. Caspase-3 cleaves and
inactivates the glutamate transporter EAAT2. J. Biol.
Chem. 281, 14076–14084 (2006).
86. Guegan, C., Vila, M., Rosoklija, G., Hays, A. P. &
Przedborski, S. Recruitment of the mitochondrial-
dependent apoptotic pathway in amyotrophic lateral
sclerosis. J. Neurosci. 21, 6569–6576 (2001).
87. Rabizadeh, S. et al. Mutations associated with
amyotrophic lateral sclerosis convert superoxide
dismutase from an antiapoptotic gene to a
proapoptotic gene: studies in yeast and neural cells.
Proc. Natl Acad. Sci. USA 92, 3024–3028 (1995).
88. Alexianu, M. E., Kozovska, M. & Appel, S. H. Immune
reactivity in a mouse model of familial ALS correlates
with disease progression. Neurology 57, 1282–1289
(2001).
89. Elliott, J. L. Cytokine upregulation in a murine model
of familial amyotrophic lateral sclerosis.
Brain Res.
Mol. Brain Res. 95, 172–178 (2001).
90. Almer, G. et al. Increased expression of the pro-
inflammatory enzyme cyclooxygenase-2 in
amyotrophic lateral sclerosis. Ann. Neurol. 49,
176–185 (2001).
91. Hensley, K. et al. Primary glia expressing the G93A-
SOD1 mutation present a neuroinflammatory
phenotype and provide a cellular system for studies of
glial inflammation. J. Neuroinflammation 3, 2 (2006).
92. Raoul, C. et al. Motoneuron death triggered by a
specific pathway downstream of Fas. potentiation by
ALS-linked SOD1 mutations. Neuron 35, 1067–1083
(2002).
93. Raoul, C. et al. Chronic activation in presymptomatic
amyotrophic lateral sclerosis (ALS) mice of a feedback
loop involving Fas, Daxx, and FasL. Proc. Natl Acad.
Sci. USA 103, 6007–6012 (2006).
94. Kikuchi, H. et al. Spinal cord endoplasmic reticulum
stress associated with a microsomal accumulation of
mutant superoxide dismutase-1 in an ALS model.
Proc. Natl Acad. Sci. USA 103, 6025–6030 (2006).
95. Urushitani, M. et al. Chromogranin-mediated
secretion of mutant superoxide dismutase proteins
linked to amyotrophic lateral sclerosis. Nature
Neurosci. 9, 108–118 (2006).
96. Atsumi, T. The ultrastructure of intramuscular nerves
in amyotrophic lateral sclerosis. Acta Neuropath. 55,
193–198 (1981).
97. Afifi, A., Aleu, F., Goodgold, J. & MacKay, B.
Ultrastructure of atrophic muscle in amyotrophic
lateral sclerosis. Neurology 16, 475–481 (1966).
98. Wiedemann, F. R. et al. Impairment of mitochondrial
function in skeletal muscle of patients with
amyotrophic lateral sclerosis. J. Neurol. Sci. 156,
65–72 (1998).
99. Siklos, L. et al. Ultrastructural evidence for altered
calcium in motor nerve terminals in amyotrophic
lateral sclerosis. Ann. Neurol. 39, 203–216 (1996).
100. Higgins, C. M., Jung, C. & Xu, Z. ALS-associated
mutant SOD1G93A causes mitochondrial vacuolation
by expansion of the intermembrane space and by
involvement of SOD1 aggregation and peroxisomes.
BMC Neurosci. 4, 16 (2003).
101. Kong, J. & Xu, Z. Massive mitochondrial degeneration
in motor neurons triggers the onset of amyotrophic
lateral sclerosis in mice expressing a mutant SOD1.
J. Neurosci. 18, 3241–3250 (1998).
102. Bendotti, C. et al. Early vacuolization and
mitochondrial damage in motor neurons of FALS mice
are not associated with apoptosis or with changes in
cytochrome oxidase histochemical reactivity. J. Neurol.
Sci. 191, 25–33 (2001).
103. Sasaki, S., Warita, H., Murakami, T., Abe, K. & Iwata, M.
Ultrastructural study of mitochondria in the spinal cord
of transgenic mice with a G93A mutant SOD1 gene.
Acta Neuropathol. (Berl.) 107, 461–474 (2004).
104. Rizzardini, M. et al. Neurodegeneration induced by
complex I inhibition in a cellular model of familial
amyotrophic lateral sclerosis. Brain Res. Bull. 69,
465–474 (2006).
105. Jung, C., Higgins, C. M. & Xu, Z. Mitochondrial
electron transport chain complex dysfunction in a
transgenic mouse model for amyotrophic lateral
sclerosis. J. Neurochem. 83, 535–545 (2002).
106. Damiano, M. et al. Neural mitochondrial Ca
2+
capacity impairment precedes the onset of motor
symptoms in G93A Cu/Zn-superoxide dismutase
mutant mice. J. Neurochem. 96, 1349–1361 (2006).
107. Menzies, F. M. et al. Mitochondrial dysfunction in a
cell culture model of familial amyotrophic lateral
sclerosis. Brain 125, 1522–1533 (2002).
108. Klivenyi, P. et al. Neuroprotective effects of creatine in
a transgenic animal model of amyotrophic lateral
sclerosis. Nature Med. 5, 347–350 (1999).
109. Zhu, S. et al. Minocycline inhibits cytochrome c
release and delays progression of amyotrophic lateral
sclerosis in mice. Nature 417, 74–78 (2002).
110. Higgins, C. M., Jung, C., Ding, H. & Xu, Z. Mutant Cu,
Zn superoxide dismutase that causes motoneuron
degeneration is present in mitochondria in the CNS.
J. Neurosci. 22, RC215 (2002).
111. Mattiazzi, M. et al. Mutated human SOD1 causes
dysfunction of oxidative phosphorylation in
mitochondria of transgenic mice. J. Biol. Chem. 277,
29626–29633 (2002).
112. Liu, J. et al. Toxicity of familial ALS-linked SOD1
mutants from selective recruitment to spinal
mitochondria. Neuron 43, 5–17 (2004).
113. Okado-Matsumoto, A. & Fridovich, I. Amyotrophic
lateral sclerosis: a proposed mechanism. Proc. Natl
Acad. Sci. USA 99, 9010–9014 (2002).
114. Takeuchi, H. K., Ishigaki, Y., Doyu, S. M. & Sobue, G.
Mitochondrial localization of mutant superoxide
dismutase 1 triggers caspase-dependent cell death in
a cellular model of familial amyotrophic lateral
sclerosis. J. Biol. Chem. 277, 50966–50972 (2002).
115. Bergemalm, D. et al. Overloading of stable and
exclusion of unstable human superoxide dismutase-1
variants in mitochondria of murine amyotrophic lateral
sclerosis models. J. Neurosci. 26, 4147–4154 (2006).
R E V I E W S
NATURE REVIEWS
|
Dostları ilə paylaş: