3. Differensiallash, uning asosiy qoidalari va formulalari. Berilgan f(x) funksiyadan hosila topish amali shu funksiyani differensiallash deyiladi.
Differensiallashning asosiy qoidalari. 1. O‘zgarmas miqdorning hosilasi nolga teng, ya‘ni agar y=c bo‘lsa (c=const) y'=0 bo‘ladi.
2. O‘zgarmas ko‘paytuvchini hosila ishorasidan tashqariga chiqarish mumkin: y=cu(x) bo‘lsa y'=cu'(x) bo‘ladi.
3. Chekli sondagi differensiallanuvchi funksiyalar yig‘indisining hosilasi shu funksiyalar hosilalarining yig‘indisiga teng:
4. Ikkita differensiallanuvchi funksiyalar ko‘paytmasining hosilasi birinchi funksiya hosilasining ikkinchi funksiya bilan ko‘paytmasi hamda birinchi funksiyaning ikkinchi funksiya hosilasi bilan ko‘paytmasining yig‘indisiga teng:
y=u bo‘lsa .
5. Ikkita differensiallanuvchi funksiyalar bo‘linmasining hosilasi (kasrda ifodalanib) bo‘linuvchi funksiya hosilasini bo‘luvchi funksiya bilan ko‘paytmasi hamda bo‘linuvchi funksiyani bo‘luvchi funksiya hosilasi bilan ko‘paytmasining ayirmasini bo‘luvchi(maxrajdagi) funksiya kvadratining nisbatiga teng:
bo‘lsa
6. Aytaylik, y=F(u) murakkab funksiya bo‘lsin ya’ni y=F(u), yoki u - o‘zgaruvchi, oraliq argumenti deyiladi. y=F(u) va differensiallanuvchi funksiyalar bo‘lsin.
Murakkab funksiyaning differensiallash qoidasini keltirib chiqaramiz.
Teorema: Murakkab F(u) funksiyaning erkli o‘zgaruvchi x bo‘yicha hosilasi bu funksiya oraliq argumenti bo‘yicha hosilasini oraliq argumentining erkli o‘zgaruvchi x bo‘yicha hosilasining ko‘paytmasiga teng, ya’ni
Misol: funksiyaning hosilasini toping.
Yechish: berilgan funksiyani murakkab funksiya deb qaraymiz ya’ni (1) formulaga asosan
;