On some diophantine inequalities involving primes



Yüklə 0,9 Mb.
Pdf görüntüsü
səhifə9/9
tarix19.04.2023
ölçüsü0,9 Mb.
#100520
1   2   3   4   5   6   7   8   9
A.Baker

—со
From (31) and (32) we see th a t
у JV2(8/1 log TV)
and hence from (18) we obtain
< 17
i
1 ТКТ2/ГЛ Л
TtTX_S
(35)
'
00
/ l j S( a,  *)} (sin (л«)/(л*)}2 doc >  17 
M
This together w ith Lemma 8 im m ediately implies the existence of primes Pi, p 2, p 3 w ith 
m axim um betw een 2 and inclusive such th a t (3) is satisfied; for otherwise th e left 
hand side of (35, would be zero.
I t remains therefore only to prove th a t in place of 
S; 2 there exist primes for 
which th e stronger inequality > c25 is satisfied. For this purpose we define R(oc) to 
he th e same sum as given in § 2 for 5(c2S. We clearly have
| 5 (< V 0
— 7 ? M ! ^ c J5 
-
(/ = 1 ,2 ,3 ) .
F urther, by dividing the range of integration for oc into two parts K lf K 2 according as 
| oc| 5S (log N ) B or | a | > (log N ) H we easily deduce th a t
/ I 
S (a jO c )
|2 {sin 
{n o c )l(n o c )Y doc
<
f
| 5(oy%) | 
+ iV 2 
f (n o c )~ 2doc <
- ®
x , 
K,


Baker
, On some diophantine inequalities involving primes
181
Then by Holder’s inequality we obtain
*)
/


3

S ( o i t x )
— 
(
o m
I l - i
>-i
— 00
and from (35) it follows th a t
00
j IT Ä(cr,a)j {sin 
(
7
z o c ) l(
7
ioc
) } 2
doc
{sin 
( л о с )
1
(л о с
) } 2
doc <
1
M

1 0 M .
Finally, by virtue of Lemma 8, the last inequality implies th a t primes p ^ p 2, p z exist 
such th a t (3) holds and for which the m axim um p satisfies c25 < p ^ N .  This completes 
the proof of th e theorem.
References
[1] B. J. Birch and H. Davenport, On a theorem of Davenport and Heilbronn, Acta Mathematica 100 (1958), 
259— 279.
[2] H. Davenport and H. Heilbronn, On indefinite quadratic forms in five variables, J. London Math. Soc. 21 
(1946), 185— 193.
[3] K. Prachar, Primzahl Verteilung, Berlin-Göttingen-Heidelberg 1957.
[4] H. Richert, Aus der additiven Primzahltheorie, J. Reine Angew. Math. 191 (1953), 179— 198.
[5] I. M . Vinogradov, The method of trigonometrical sums in the theory of numbers (translated by K. F. Roth 
and A. Davenport), London-New York 1954.
[6] . Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Annalen 77 (1916), 313—352.
Eingegangen 28. März 1966
Шг
«■* •i'*"*' •
» tr 'Чк •
V i
v
J
n
-V
T>Ä

Yüklə 0,9 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin