Parametrli tengsizliklar.
1.(x − a)(x − b) ≤ 0 tengsizlikning yechimlari to’plami [2; 6] oraliqdan iborat. ab ning qiymatini toping.
A) 10 B) 11 C) 13 D) 12 E) 8
2.b ning qaysi qiymatlarida yechimga ega emas?
bx ≥ 6b − 2
bx ≤ 4b + 2
(−∞; 0) ∪ [2; ∞) B) 2 D) (2; ∞) E) (−∞; 0)
3.k ning kx
2 + 4x + k + 1 > 0 tengsizlik yechimga ega bo’lmaydigan butun qiymatlari orasidan eng kattasini toping.
A) eng kattasi yo’q B) bu munosabat k ning biror qiymatida ham o’rinli emas. C) −3 D) −2 E) −1
4.n ning 10 dan oshmaydigan
nechta natural qiymatida nx2+4x > 1−3n tengsizlik x ning ixtiyoriy qiymatida o’rinli bo’ladi?
A) 10 B) 9 C) 8 D) 7 E) 6
5. m ning qanday qiymatida tengsizlikning eng katta manfiy yechimi −3 gateng bo’ladi?
A) −9 B) −8 C) −7 D) −6 E) −5
6.a > b > c > 0 bo’lsa, larni taqqoslang.
7.Agar a, b€N , a > 10, b > 16 bo’lsa,quyidagilardan qaysi biri har doim o’rinli bo’ladi?
8.p
2 + q
2< 20
pq < 22 bo’lsa, |p + q| ning butun qiymatlari nechta?
5 B) 6 C) 7 D) 8 E) 9
9.Agar a < −1 bo’lsa, quyidagi keltirilgan ifodalardan qaysi birining qiymati eng katta bo’ladi?
A) a
-1 B) a
-3 C) a
-5 D) a
3 E) a
5
10. ni taqqoslang.
A) a > b B) a < b C) a = b D) a = b + 1 E) a = b − 1
11. sonlarni o’sish tartibida joylashtiring.
A) p < n < m B) n < p < m C) m < p < n
D) n < m < p E) p < m < n
12.Quyidagi
munosabatlardan qaysi biri
noto’g’ri?
13.Agar 3 ≤ x ≤ 6 va 15 ≤ y ≤ 60 bo’lsa, ning qiymati qaysi kesmaga tegishli?
A) [5; 10] B) [0, 5; 20] C) [5; 20] D) [2, 5; 20] E) [0, 1; 0, 2]
14. bo’lsa, quyidagi ifodalardan qaysi birining qiymati eng katta bo’ladi?
A) (a − 1)
2 B) (a − 1)
3 C) a
3 − 1 D) a
2 − 1 E) 1 − a
15.a = 1 · 2 · 3 · . . . · 29 va b = 15
29 ni taqqoslang.
A) a = b B) a > b C) a < b D) a = b + 1 E) a = b − 1
16.Agar x€[2; 5] va y€[2; 5] bo’lsa, ifodaning eng katta qiymati nechaga teng bo’lishi mumkin?
17.Agar 9 ≤ x ≤ y ≤ z ≤ t ≤ 81 bo’lsa, ifodaning eng kichik qiymatini toping?
18.Agar 7 ≤ x ≤ y ≤ z ≤ t ≤ 112 bo’lsa, ifodaning eng kichik qiymatini toping?
A) 0, 5 B) 0, 2 C) 0, 7 D) 0, 8 E) topib bo’lmaydi
19.Agar 5 ≤ x ≤ y ≤ z ≤ t ≤ 320 bo’lsa, fodaning eng kichik qiymatini toping?
A) 0, 25 B) 0, 5 C) 1, 6 D) 0, 16 E) topib bo’lmaydi
20. x ning butun qiymatlari ko’paytmasini toping?
A) 120 B) 60 C) 90 D) 180 E) 210
21. tengsizlikni yeching.
tengsizlikni yeching.
tengsizlikni yeching.
24. tengsizlik nechta butun yechimga ega?
A) 1 ta B) 2 ta C) 3 ta D) 4 ta
25. tengsizlikni yeching.
A) (-1,5;-0,25) B) (0,25; 1,5)
C) (-1,5; 1,5) D) (-1,5;-0,25)u(0,25; 1,5)
26. tengsizlikni yeching.
tengsizlikni yeching.
tengsizlikni yeching.
tengsizlikni yeching.
tengsizlikni yeching.