Article An Exploration of Multimedia Supports for Diverse Learners During Core Math Instruction


particularly for the word problems. Students from the Tier 1



Yüklə 397,73 Kb.
Pdf görüntüsü
səhifə3/3
tarix16.05.2023
ölçüsü397,73 Kb.
#113692
1   2   3
1-sinf2


particularly for the word problems. Students from the Tier 1
subgroup reported and/or were observed using the review
videos occasionally or not at all. The audio recordings were
included as a text to speech support for any text directions or
word problems. Throughout the study, 28% of the interviewed
students reported used the audio recordings, including three of
the five students from the MLD subgroup. One student from the
MLD subgroup, who also has poor reading comprehension,
reported using them for every problem. He would press the
audio button just before entering the widget and then follow
along with the audio recording as he read the problem. The
addition of the audio recordings allowed this student to inde-
pendently comprehend directions and word problems without
asking for teacher assistance.
The most widely used support for expression of mathemat-
ical knowledge was altering the pen formatting in the writing
widget to change the thickness or to utilize different colors. All
students across subgroups altered pen settings on at least two
occasions. Our analysis of the students’ work, daily field notes,
and video recordings of final student interviews revealed sev-
eral trends in formatting, particularly related to students’ use of
color, to improve mathematical understanding and expression
(see Online Supplemental Figure S1). Students were never
given any suggestions about how manipulating colors or line
width in the widget could help them. The initial findings related
to the use of formatting were so interesting that we analyzed all
writing widget work samples rather than just focusing on days
where the eWorkbook was most effective.
All but one student used color at least once when using the
writing widget with nearly 75% of them using color regularly
(more than half of the time). Most students (89%) utilized color
for engagement purposes—writing problems with different
colors or selecting their favorite color(s). Some students also
utilized color to enhance their mathematical expression. Nearly
two thirds of the students used color to show procedural steps
or to make the answer stand apart from their work; in fact, four
of the five students in the MLD subgroup used color this way. It
is important to reiterate, the idea of using color, whether for
engagement purposes or to improve mathematical understand-
ing and expression was entirely student constructed. Addition-
ally, though students had access to colored pens, pencils, and
highlighters for use on either of the PPWs, they only utilized
color within the eWorkbook.
Two less common uses of color—to emphasize place value
and to self-monitor—were highly effective in that they gener-
ally resulted in accurate procedures and final answers. Seven
students (two from the MLD subgroup) used color to
emphasize place value, which was especially helpful for these
students to avoid making the error of using a regrouped number
from the first step again in the second step of a two-digit by
two-digit multiplication problem. Four students (one from the
MLD subgroup) utilized color for self-monitoring. A student in
the Tier 1 subgroup explained how she first solved a problem
using the black pen, then resolved the problem in the yellow
pen to ensure she got the same answer. Another student from
the Tier 1 subgroup showed the PI how she matched colors with
the scaffolded information in word problems to ensure she used
all of the information. The student from the Tier 2 subgroup
chose another color to write a rounded/estimated answer to the
multiplication problem to “see if [his] answer was reasonable.”
Only one student from the MLD subgroup utilized color to self-
monitor; she used a new color to write procedural mnemonics
for long division and area model boxes for multiplication.
Drawbacks of Multimedia Supports
The second research question targeted how and under what
conditions the multimedia supports in the eWorkbook hindered
learning as evidenced by student challenges in expressing
understanding of whole number multiplication and division.
Similar to the findings for Research Question 1, elements exert-
ing a negative influence on students’ learning are grouped into
two categories: aspects of the lesson or instruction that hin-
dered learning (i.e., lesson elements) and features of the
eWorkbook that students did not use successfully (i.e., eWork-
book elements). Some of the elements described below result
from constraints inherent to the eWorkbook or the widgets
themselves, while others emerge from a more dynamic inter-
play between curriculum design, instructional delivery, and
student agency within an authentic classroom setting.
Lesson elements. In our examination of daily independent accu-
racy scores across subgroups, we found the eWorkbook was
rarely the least effective condition of the day. There were 2
days (Days 4 and 10) where the eWorkbook average indepen-
dent accuracy score was slightly lower (less than 1 point) than
the next highest condition, so we started our qualitative analy-
sis looking at these 2 days. Two additional days we examined
were the last 2 intervention days of the study when the tradi-
tional (PPW) worksheet daily scores were higher than either of
the two scaffolded conditions (the only days this occurred). On
these “least effective” days, several trends emerged related to
the lesson content and how students were supported by the
classroom staff.
On the 4 focus days described above, the PI observed and
documented the TA helping students (including two students
from the MLD subgroup who typically struggled with math)
before they requested any assistance. On the last 2 intervention
days, the teacher frequently supported all students in the class-
room, as these lessons were introductory lessons on long divi-
sion. These support habits reduced the overall eWorkbook
independence score for these days and may have deterred those
students from using some of the embedded supports.
48
Journal of Special Education Technology 34(1)


Additional lesson characteristics when the eWorkbook was
less effective consist of the inclusion of multiple problems
using nonwriting widgets, infrequent student use of embedded
supports, frequent student errors in following directions, and,
on the last 2 days, “new” math content. The errors related to
following directions were most common when the eWorkbooks
included problems with multimodal means of expression such
as the matching or drag-and-drop widgets. These widget types
were used unconventionally and thus required the students to
read the directions carefully to execute the task accurately,
which made it difficult to evaluate their true mathematical
understanding. Interestingly, despite the slight decrease in
accuracy and independence, days were commonly reported as
student favorites because of the inclusion of nonwriting wid-
gets. All students described the drag-and-drop and/or the
matching widget as their favorite widget type when inter-
viewed. This suggests the potential of these widgets as a means
of mathematical expression if students receive enough time to
practice with the tool.
eWorkbook elements. While many of the eWorkbook features
appeared to foster mathematical understanding and expression,
occasionally, certain aspects of eWorkbook implementation
added additional barriers to mathematical understanding and
expression. As much as possible, the PI attempted to address
these barriers as they emerged; however, some obstacles
related to the widgets and instruction could not be addressed
with the resources available in the present study.
One of the goals for eWorkbook development was to match
any embedded supports with the teacher’s instruction. In other
words, the review videos and hints only included methods and
tips the teacher had used, or planned to use, in his instruction.
This required regular communication between PI and teacher.
On occasion, the teacher deviated from his instructional plans,
used different names for multiplication and division procedures
than those in the book, or used a new strategy mid-lesson
(based on formative assessment of student engagement and
understanding). When these changes occurred after the eWork-
book materials had been created for the lesson, there was a
mismatch between instruction and practice for some questions.
While these mismatches emerged from the teacher’s natural
teaching processes, on two occasions, this had a noticeable and
negative impact on expression of mathematical understanding
for students in the eWorkbook condition.
For example, on Intervention Day 6, the teacher used a
different explanation for close estimation than was explained
in the curriculum. The students using the eWorkbook for inde-
pendent practice that day attempted to use the hint and video
for this problem but were reportedly confused because the
widget explained close estimation as it was presented in the
curriculum, and this did not align with the teacher’s explana-
tion. A similar mismatch occurred on Intervention Day 12
when, according the lesson plan for the day, the students were
expected to write an equation for the division word problems in
addition to solving the division problem using the traditional
method. Unfortunately, the teacher did not address the use of
equations during his instruction. Thus, many students were
confused when an in-widget scaffold reminded them to
include an equation in their responses. Although this particu-
lar mismatch was not as problematic (as it only affected a
small part of the word problem), it does underscore the reality
that technology is most supportive when it is tightly aligned to
instructional delivery.
The functionality of the widgets themselves was also, at
times, a barrier to their effective use. The writing widget students
regularly used for solving multiplication/division problems pre-
sented challenges to the physical act of writing with a stylus in a
limited space. Over half the students (56%) reported having
some difficulty with the stylus during their final student inter-
views. Illegible handwriting occasionally led to student errors
when they misinterpreted their own writing and made it more
difficult for teachers to assess student knowledge. The matching
widget also presented a barrier to student expression of mathe-
matical knowledge on occasion. Instructions for the matching
widget often required students to either remove or leave all
multiples of a specified number. One unchangeable aspect of
the widget is its game-like design. If the students clicked all
matching objects to clear the screen, a trophy would appear with
the words “You Win!” The PI explained to students the goal for
this widget for eWorkbooks was not to get the trophy but to
select only the images indicated in the directions. Unfortunately,
many students deleted all matching numbers (to get the trophy)
when the directions had indicated to leave certain numbers visi-
ble. The latter error was more problematic because we lost any
opportunity to assess the student’s knowledge of multiples.
Social Validity
The final question addresses social validity. Due to the large
number of students in this case study, even with the use of
video, we had to rely on student reports and field notes to
examine student use of specific embedded scaffolds, hints, and
review videos in the eWorkbook. All students who were inter-
viewed were able to accurately explain and demonstrate the
various tools and supports available to them in the eWorkbook
during their final interviews. As previously noted, students
were also forthright in explaining exactly which tools and sup-
ports they used (see Online Supplemental Table S2). Students
across subgroups described their challenges using specific
components of the eWorkbook (e.g., writing, drag-and-drop
widgets); however, their reported challenges were often
described with solutions.
PI:
Is there anything that’s hard about using
the iPad?
“HANNAH” (MLD):
Some of them are, like when you do that
[attempts to drag a very small item in a
drag-and-drop widget], like sometimes
when you move it around and try to do
that it sort of messes it up a little. But then
the easy thing is you can just tap it and it
goes away.
Kaczorowski et al.
49


When given the choice between the different options, 72%
of the 18 students interviewed said they preferred the eWork-
book to either worksheet, and 17% said they preferred either
the eWorkbook or the SCW. Of the four interviewed students in
the MLD subgroup, three preferred the eWorkbook condition
and one preferred either of the scaffolded options.
By the end of the study, all students navigated eWorkbooks
with confidence and ease. When students did encounter tech-
nical difficulties, however, the PI observed students indepen-
dently troubleshooting these challenges without frustration.
Students’ perceptions of the eWorkbook as the superior condi-
tion was evident in their descriptions.
“STACEY” (Tier 1):
You have to take turns because it wouldn’t
be fair if someone was using the iPad
every single day. And also if you kept
on using the iPads it would probably make
math a little bit easier and then the new
worksheets and the Polar Bear [i.e., tradi-
tional] workbooks would be a little bit
frustrating because the workbooks and the
new worksheets are more harder.
Six students across subgroups used the word fun to describe
math practice using the iPad. Student enjoyment of the eWork-
book was obvious by their level of engagement during the
independent work period.
In his final interview, the teacher’s first comment also
emphasized his students’ high level of engagement:
“Engagement was increased significantly using the iPad—
everyone was focused. I would say engagement was near
100% for the 20–30 min of independent work time each day
over the course of the study.” Video records of the independent
work periods showed students hovering closely over their work
and changing the way they were sitting in their chairs so the
iPad was placed on their laps. Each day the students entered the
classroom and excitedly checked the researcher’s review board
to see whether they were assigned to the eWorkbook condition
for the day. The use of technology was clearly motivating for
these students.
“NEIL” (Tier 2):
Kids like electronics, and the normal work-
sheet and paper is not electronic, but the iPad
is, which makes it easier to learn for kids . . . at
least for me.
“LOKI” (Tier 2):
I would definitely pick the iPad. I’m just big
on tech. I’m a techy!
Discussion
For this study, we were interested in exploring how different
multimedia features could support diverse learners during
core math instruction. We found student use and understand-
ing of the supports, incorporation of choice, and expert gui-
dance from the teacher were crucial factors for student
success. As suggested by evidence from the present study,
technologies similar to the eWorkbook have the potential to
extend the reach of a teacher’s support when it enhances
existing evidence-based practices and is carefully aligned
with core instruction. This study offers preliminary evidence
that a combination of quality instruction with optimally
designed multimedia supports can serve as a critical foothold
in fostering mathematical achievement for the wide range of
students in today’s inclusive classrooms.
Early research on technology for mathematics tended to
focus on improving basic math skills rather than supporting
conceptual understanding and analytical thinking (e.g.,
Howell, Sidorenko, & Jurica, 1987; Koscinski & Gast,
1993), particularly for students with disabilities. We are
starting to see a focal shift in more recent technology
research on students with and without disabilities where
researchers are beginning to explore how to leverage tech-
nology to create visualizations, instructional scaffolds, and
conceptual supports to teach challenging math concepts
(e.g., Khouyibaba, 2010). Within the eWorkbook, students
had options to independently access multimedia supports
such as visual representations and review videos when prac-
ticing whole number multiplication and division. Although
the students were not creating these visualizations on their
own, this study demonstrates how multimedia can encour-
age self-support and provide options for demonstrating
mathematical understanding.
Implications for Practice
Three major themes emerged related to implementation of
technology for core math instruction: (a) alignment with exist-
ing evidence-based practices, (b) support habits and strategy
instruction, and (c) finding a balance between guidance and
student autonomy.
Evidence-based practice alignment. Researchers recommend the
incorporation of explicit, systematic instruction to support
students with MLD or at risk of MLD (e.g., Doabler et al.,
2012). The eWorkbook was designed to enhance effective
instruction in mathematics by incorporating explicit supports
within an engaging multimedia tool. The PI used free software
(iBooks Author) and web applications (Bookry) with the hope
that teachers could eventually create their own eWorkbooks
with multimedia supports that align to their instruction.
Whether teachers opt to create their own multimedia or lever-
age existing technology tools, they should select technology
with pedagogical purpose. Many educational technology tools
on the market can be used to implement evidence-based prac-
tices such as providing frequent opportunities to respond,
immediate feedback, video modeling, and visual organizers
(Kaczorowski, 2017). Additionally, when students have
access to these supports on individual devices, they can access
them as needed instead of waiting for support from the
teacher, particularly during small group or independent
activities.
50
Journal of Special Education Technology 34(1)


Support habits and strategy instruction. In addition to selecting
tools that align with best practice, teachers need to be prepared
and willing to let technology alter their support habits. The PI
documented students using eWorkbook supports more when
the teacher encouraged it throughout the independent work
period. Students in the MLD subgroup regularly needed to be
encouraged to try the built-in supports, so the teacher still
played an important role in their success of using these tools.
On days when the eWorkbook was least effective, we noticed
some students (particularly those from the MLD subgroup) did
not use, misused, or did not understand the multimedia supports
provided. Although every widget’s purpose and functionality
was introduced to the students, neither the PI nor the teacher
provided explicit instruction in how widgets such as spot the
difference, matching, media, or pop-up could enhance mathe-
matical understanding or expression. Although some students
were able to utilize some of the feedback and hints provided by
these widgets, many were not.
Students from the MLD subgroup seemed to have the most
difficulty utilizing embedded supports, as they frequently
requested teacher assistance even after trying them on their
own. Students who are low achieving and those with MLD
have a more difficult time paraphrasing mathematical problems
and representing them visually than their average-achieving
peers (Krawec, 2014), so the pop-up hints and review videos
were expected to be a major affordance for these students.
Unexpectedly, students with MLD had a difficult time lever-
aging these supports to improve their problem-solving
accuracy. Using visual representations to assist with problem-
solving goes beyond just looking at the images; students need
to be supported in the process of leveraging visualizations
(Harries & Suggate, 2006). In the present study, the teacher
typically reviewed the practice problems with the whole group
after the independent work session. Perhaps during these
debriefing sessions, the teacher could have included a discus-
sion about the visualizations, and during guided instruction,
students might also have worked in groups to practice drawing
visual representations based on word problems and writing
word problems based on visual representations. These adjust-
ments may have helped the students with MLD to more effec-
tively leverage the available eWorkbook supports.
Another student-constructed multimedia support we discov-
ered was their use of color strategically to self-monitor and
keep track of place value. Three of the five students with MLD
utilized color in the writing widget, but only one student from
this subgroup used color strategically. When students used
color this way, it was almost always associated with accurate
and independent math practice. It may be beneficial for the
teacher to provide modeling and guided practice opportunities
for all students to use novel affordances of color in the context
of mathematics problem-solving. To encourage student auton-
omy and critical thinking, teachers could also facilitate student
inquiry and discussion, another evidence-based practice (Smith
& Stein, 2011), about how color could be utilized as an orga-
nizational or monitoring support.
Student autonomy. Teaching with technology requires teachers
to find a balance between providing structure and guidance and
allowing students freedom to learn in a self-regulated way
(Beishuizen, 2011). This means, at times, teachers need to be
ready to shift control over to their students. When interviewed,
the students reported enjoying being able to choose what sup-
ports they used. Each student confidently explained which sup-
ports were most helpful to them in the interview and did not shy
away from telling the PI when a support was not useful for
them. Early in the study, students would ask the PI for assis-
tance with technology troubleshooting. Conversations with the
students on the mid-study training day revealed students from
all subgroups already knew how to troubleshoot most iPad-
based errors (e.g., frozen screens and volume adjustment).
When the PI asked the groups why they were asking for help
when they knew how to fix it, the students indicated they did
not know they were allowed to troubleshoot on their own.
Nearly all of the students had experience with some kind of
mobile technology at home and reported assisting their parents
with troubleshooting. This suggests a need for teachers to allow
for more student control over the technology used for learning.
Limitations and Future Directions
The results of this study were promising in terms of potential
affordances of well-implemented instructional technology to
support the learning of students with MLD. Several limitations,
however, should be noted. First, a purposive sample was used
for this research to ensure the presence of students with MLD in
an inclusive classroom where the teacher was already imple-
menting high-quality, evidence-based math instruction; there-
fore, the findings may not be generalizable to all settings.
Additionally, the researchers, who conducted the analysis, are
also the eWorkbook designers; we acknowledge a potential
bias as we created the eWorkbook with the intent to enhance
student learning. The identification of students for the MLD
subgroup could be seen as another limitation. Exact procedures
for identifying students with LD vary from district to district, so
rather than relying on the school’s identification of students for
this subgroup, the teacher and PI worked together to evaluate
students based on the federal definition of LD and research-
based assessment cutoffs to identify students with or at risk of
MLD. This procedure may be perceived as a limitation; how-
ever, it is common practice in MLD research.
Another limitation of this study is the short number of inter-
vention sessions over intermittent instructional days. The sec-
ond quarter in any elementary environment is filled with
holiday breaks that result in shortened school weeks. Fortu-
nately, these breaks in instruction did not appear to impact the
students’ knowledge of the tool, but the 12 intervention days
likely did not allow optimal time for students to leverage the
full potential of the eWorkbook. Despite this short intervention
period, there were still 233 separate work samples included in
the analysis (98 in the eWorkbook, 71 in SCW, and 64 in
PPW), daily video recordings, and 19 interviews, which
Kaczorowski et al.
51


allowed for a data-rich investigation of the eWorkbook’s
impact on math achievement.
Much of the research tying technology to student achieve-
ment in mathematics focuses on accuracy as the sole achieve-
ment construct, allowing problems to be graded objectively as
correct or incorrect (Seo & Bryant, 2009). In this study, we
attempted to broaden the construct of math achievement by
examining student engagement habits in addition to their accu-
racy scores to explore how students utilized technology to sup-
port learning in mathematics. It is important to note the
researchers selected the technology for this study. In the future,
to investigate more authentic uses of technology, we recom-
mend the role of technology decision maker shifts away from
the researcher and toward the teacher and even the students
themselves. As demonstrated by the present study, the role of
the teacher is critical in technology integration, so future
research should explore ways to measure how purposeful tech-
nology integration that is linked to evidence-based instruction
impacts student learning habits.
Authors’ Note
Andrew Hashey is now to SUNY Buffalo State, Buffalo, NY, USA.
Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to
the research, authorship, and/or publication of this article.
Funding
The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: The authors
of this manuscript completed this research while they were doctoral
scholars at University at Buffalo. This research was supported in part
by a grant from the United States Department of Education, Office of
Special Education Programs, Grant Number: H325D100026.
ORCID iD
Tara L. Kaczorowski
http://orcid.org/0000-0001-6695-8834
Supplemental Material
Supplemental material for this article is available online.
References
Association of Mathematics Teacher Educators. (2015, November).
Position of the association of mathematics teacher educators on tech-
nology. Retrieved from https://amte.net/position/amtetechnology
Beishuizen, J. (2011). Fostering self-regulated learning in technology
enhanced learning environments: Evidence from empirical research.
In R. Carneiro, P. Lefrere, K. Steffens, & J. Underwood (Eds.),
Self-regulated learning in technology enhanced environments: A
European perspective (Vol. 5, pp. 103-122). Rotterdam, the Nether-
lands: Sense Publishers.
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychol-
ogy. Qualitative Research in Psychology, 3, 77–101. doi:10.1191/
1478088706qp063oa
Cave, A., & Brown, C. W. (2010). When learning is at stake: Explo-
ration of the role of teacher training and professional development
schools on elementary students’ math achievement. National
Forum of Teacher Education Journal, 20, 1–21. Retrieved from
http://www.nationalforum.com/Journals/NFTEJ/NFTEJ.htm
Chang, K.-E., Sung, Y.-T., Chen, Y.-L., & Huang, L.-H. (2008).
Learning multiplication through computer-assisted learning activ-
ities. Computers in Human Behavior, 24, 2904–2916. doi:10.1016/
j.chb.2008.04.015w
Chauhan, S. (2017). A meta-analysis of the impact of technology on
learning effectiveness of elementary students. Computers & Edu-
cation, 105, 14–30. doi:10.1016/j.compedu.2016.11.005
Clements, D. H., & Sarama, J. (2012). Building blocks. New York,
NY: McGraw-Hill Education.
Compton, D. L., Fuchs, L. S., Fuchs, D., Lambert, W., & Hamlett, C.
(2012). The cognitive and academic profiles of reading and mathe-
matics learning disabilities. Journal of Learning Disabilities, 45,
79–95. doi:10.1177/0022219410393012
Cortiella, C., & Horowitz, S. H. (2014). The state of learning disabil-
ities: Facts, trends and emerging issues. New York, NY: National
Center for Learning Disabilities. Retrieved from http://www.ncld
.org/archives/reports-and-studies/2014-state-of-ld
Cumming, T. M., & Draper Rodrı´guez, C. (2017). A meta-analysis of
mobile technology supporting individuals with disabilities. The
Journal of Special Education, 51, 164–176. doi:10.1177/
0022466917713983
Doabler, C. T., Cary, M. S., Jungjohann, K., Clarke, B., Fien, H.,
Baker, S., . . . Chard, D. (2012). Enhancing core mathematics
instruction for students at risk for mathematics disabilities.
TEACHING Exceptional Children, 44, 48–57. doi:10.1177/
004005991204400405
Edyburn, D. L., Rao, K., & Hariharan, P. (2017). Technological practices
supporting diverse students in inclusive settings. In M. T. Hughes &
E. Talbott (Eds.), The Wiley handbook of diversity in special educa-
tion (pp. 357–377). West Sussex, England: John Wiley.
Eisenhardt, K. M. (1989). Building theories from case study research.
The Academy of Management Review, 14, 532–550. doi:10.2307/
258557
Fries, K. M. (2013). Effectiveness of mastering math facts on second-
and third-grade students with specific learning disabilities in
mathematics. The Pennsylvania State University. Retrieved from
https://etda.libraries.psu.edu/paper/18702/16981
Fuson, K. (2013). The next-generation NSF program math expressions
and the common core state standards. Houghton Mifflin Harcourt.
Retrieved from http://hmhco.com/mathexpressions
Geary, D. C. (2011). Consequences, characteristics, and causes of
mathematical learning disabilities and persistent low achievement
in mathematics. Journal of Developmental & Behavioral Pedia-
trics, 32, 250–263. doi:10.1097/DBP.0b013e318209edef
Gierdien, F. (2009). More than multiplication in a 12
 12 multiplica-
tion table. International Journal of Mathematical Education in Sci-
ence & Technology, 40, 662–669. doi:10.1080/00207390802641684
Hale, J., Alfonso, V., Berninger, V., Bracken, B., Christo, C., Clark,
E., . . . Goldstein, S. (2010). Critical issues in response-to-
intervention, comprehensive evaluation, and specific learning
disabilities identification and intervention: An expert white
paper consensus. Learning Disability Quarterly, 33, 223–236.
doi:10.18666/LDMJ-2014-V20-I2-5276
52
Journal of Special Education Technology 34(1)


Harries, T., & Suggate, J. (2006). Exploring links across representa-
tions of numbers with young children. International Journal for
Technology in Mathematics Education, 13, 53–64. Retrieved from
http://dro.dur.ac.uk/1847/
Howell, R., Sidorenko, E., & Jurica, J. (1987). The effects of computer
use on the acquisition of multiplication facts by a student with
learning disabilities. Journal of Learning Disabilities, 20,
336–340. doi:10.1177/002221948702000606
Huang, H. E. (2014). Third- to fourth-grade students’ conceptions of
multiplication and area measurement. ZDM Mathematics Educa-
tion, 46, 449–463. doi:10.1007/s11858-014-0603-1
Individuals With Disabilities Education Act, 20 U.S.C. § 1400 et seq.
(2004).
Jitendra, A. K., & Star, J. R. (2011). Meeting the needs of students
with learning disabilities in inclusive mathematics classrooms: The
role of schema-based instruction on mathematical problem-
solving. Theory into Practice, 50, 12–19. doi:10.1080/00405841.
2011.534912
Kaczorowski, T. L. (2017). Educational technology for diverse
learners. New Times for DLD, 35, 1–10. Retrieved from
http://teachingld.org/dld_times
Kagohara, D. M., van der Meer, L., Ramdoss, S., O’Reilly, M. F.,
Lancioni, G. E., Davis, T. N., . . . Sigafoos, J. (2013). Using iPods
®
and iPads
®
in teaching programs for individuals with developmental
disabilities: A systematic review. Research in Developmental Dis-
abilities, 34, 147–156. doi:10.1016/j.ridd.2012.07.027
Khouyibaba, S. (2010). Teaching mathematics with technology. Pro-
cedia—Social and Behavioral Sciences, 9, 638–643. doi:10.1016/j.
sbspro.2010.12.210
Kim, M. C., & Hannafin, M. J. (2011). Scaffolding problem solving in
technology-enhanced learning environments (TELEs): Bridging
research and theory with practice. Computers & Education, 56,
403–417. doi:10.1016/j.compedu.2010.08.024
Kinzer, C. J., & Stanford, T. (2014). The distributive property: The
core of multiplication. Teaching Children Mathematics, 20,
302–309. doi:10.5951/teacchilmath.20.5.0302
Koscinski, S. T., & Gast, D. L. (1993). Use of constant time delay in
teaching multiplication facts to students with learning disabilities.
Journal of Learning Disabilities, 26, 533–544. doi:10.1177/
002221949302600807
Krawec, J. L. (2014). Problem representation and mathematical prob-
lem solving of students of varying math ability. Journal of Learn-
ing Disabilities, 47, 103–115. doi:10.1177/0022219412436976
Landerl, K., Go¨bel, S. M., & Moll, K. (2013). Core deficit and indi-
vidual manifestations of developmental dyscalculia (DD): The role
of comorbidity. Trends in Neuroscience and Education, 2, 38–42.
doi:10.1016/j.tine.2013.06.002
Leech, N. L., & Onwuegbuzie, A. J. (2009). A typology of mixed
methods research designs. Quality & Quantity, 43, 265–275.
doi:10.1007/s11135-007-9105-3
Lund, K., McLaughlin, T. F., Neyman, J., & Everson, M. (2012). The
effects of DI flashcards and math racetrack on multiplication facts
for two elementary students with learning disabilities. Journal of
Special Education Apprenticeship, 1, 1–15. Retrieved from https://
files.eric.ed.gov/fulltext/EJ1127923.pdf
Montague, M., Enders, C., & Dietz, S. (2011). Effects of cognitive
strategy instruction on math problem solving of middle school
students with learning disabilities. Learning Disability Quarterly,
34, 262–272. doi:10.1177/0731948711421762
National Council of Teachers of Mathematics. (2015, July). Strategic
use of technology in teaching and learning mathematics: A posi-
tion of the national council of teachers of mathematics. Author.
Retrieved from http://www.nctm.org/Standards-and-Positions/
Position-Statements/
National Mathematics Advisory Panel. (2008). Foundations for suc-
cess: The final report of the national mathematics advisory panel.
Washington, DC: U.S. Department of Education. Retrieved from
https://www2.ed.gov/about/bdscomm/list/mathpanel/reports.html
Renaissance Learning. (2013). Accelerated math. Wisconsin Rapids,
WI: Author.
Rose, D. H., & Meyer, A. (2002). Teaching every student in the digital
age: Universal design for learning. Alexandria, VA: Association
for Supervision and Curriculum Development. Retrieved from
http://www.eric.ed.gov/ERICWebPortal/detail?accno
¼ED466086
Seo, Y.-J., & Bryant, D. P. (2009). Analysis of studies of the effects of
computer-assisted instruction on the mathematics performance of
students with learning disabilities. Computers & Education, 53,
913–928. doi:10.1016/j.compedu.2009.05.002
Smith, M. S., & Stein, M. K. (2011). 5 practices for orchestrating
productive mathematics discussions (1st ed.). Reston, VA:
National Council of Teachers of Mathematics.
Ting, Y.-L. (2013). Using mobile technologies to create interwoven
learning interactions: An intuitive design and its evaluation. Com-
puters & Education, 60, 1–13. doi:10.1016/j.compedu.2012.07.004
U.S. Department of Education. (2016). Future ready learning: Reim-
agining the role of technology in education (National Education
Technology Plan). Washington DC: Office of Educational Tech-
nology. Retrieved from http://tech.ed.gov
U.S. Department of Education, National Center for Education Statis-
tics. (2016, May). The condition of education: Children and youth
with disabilities. Retrieved from https://nces.ed.gov/programs/coe/
indicator_cgg.asp
van Garderen, D., Poch, A., Jackson, C., & Roberts, S. A. (2017).
Teaching mathematics to students with disabilities from diverse
backgrounds. In M. T. Hughes & E. Talbott (Eds.), The Wiley
handbook of diversity in special education (pp. 209–230). West
Sussex, England: John Wiley.
Wu, W.-H., Jim Wu, Y.-C., Chen, C.-Y., Kao, H.-Y., Lin, C.-H., &
Huang, S.-H. (2012). Review of trends from mobile learning
studies: A meta-analysis. Computers & Education, 59,
817–827. doi:10.1016/j.compedu.2012.03.016
Yin, R. K. (1984). Case study research: Design and methods. Thou-
sand Oaks, CA: Sage.
Author Biographies
Tara L. Kaczorowski is an Assistant Professor in the Depart-
ment of Special Education at Illinois State University. She
graduated from University at Buffalo with a Ph.D. in special
education and a concentration in instructional technology. Her
primary research areas are in teacher preparation, STEM
Kaczorowski et al.
53


instruction, and technology-based interventions for students
with high-incidence disabilities.
Andrew I. Hashey is an Assistant Professor in the Exceptional
Education Department at Buffalo State College. His research
interests include the olw of self-regulation and technology-
based supports in writing, Universal Design for Learning, and
new literacies. Dr. Hashey’s recent scholarship explores pre-
service teachers’ acquisition and implementation of evidence-
based instructional strategies.
Dane Marco Di Cesare, PhD serves as the Program Coordi-
nator and Data Manager of the New York State Technical
Assistance Center, as well as an instructor in the Faculty of
Education Department at Brock University in Ontario, Canada.
Dr. Di Cesare’s professional interests involve digital literacies,
multimodality, and classroom dynamics with a focus on stu-
dents with high-incidence disabilities. He has conducted a vari-
ety of research activities related to tablet use, multimodality,
and literacy with students of varying exceptionalities across
different grade levels.
54
Journal of Special Education Technology 34(1)

Yüklə 397,73 Kb.

Dostları ilə paylaş:
1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin