Kirish Intervallardagi elementar amallar Kalit so'zlar



Yüklə 181,58 Kb.
Pdf görüntüsü
səhifə2/7
tarix17.09.2023
ölçüsü181,58 Kb.
#144683
1   2   3   4   5   6   7
MS-13433686-H uz

Choleskiyning faktorizatsiyasi deb ataladigan bu parchalanish pastki
uchburchak F matritsaning transpozitsiyasi bilan hosil bo'ladi .
ÿ
ÿ
ÿ
3.1.2 Silvestr mezoni:
1
.
Agar A oraliq koeffitsienti simmetrik va musbat aniqlangan kvadrat
matritsa bo'lsa, u holda F intervalli koeffitsientli pastki uchburchak matritsa
mavjud bo'lib, u quyidagilarga javob beradi:
a+b=[a1;a2]+[b1;b2]=[m(a)+m(b)ÿk; [m(a)+m(b)+k] (b2 + a2)ÿ(b1 + a1)
.
ÿ
Kvadrat matritsaning ko‘chirilishi oraliq koeffitsient matritsasi bo‘lib,
quyidagicha belgilanadi: AT oraliq koeffitsientli A simmetrik matritsaning
satr va ustunlarini
almashish natijasida olinadi : A simmetrik matritsa o‘zining transpozitsiyasiga
teng bo‘lgan kvadrat matritsadir, ya’ni. shundayki , ai,j = aj,i 1 va n
oralig'idagi barcha i va j uchun , bu erda ai,j intervalli matritsa koeffitsientlari,
n esa uning tartibi.
.
a = [ a1; a2]
1
ÿ
ÿ
ÿ
a2 + a1 a2 + a1 agar 0
[a1;a2] intervaliga tegishli bo'lmasa
.
ÿ
3.2 Xoleskiyning parchalanishi
.
shaklida yozilgan
2
ÿ
ÿ
ÿ
.
A =
2.2 Intervalli matritsalar
=
|[3.7; 4.3]| = [3.7; 4.3] > 0
[3.7; 4,3] [ÿ1,5;ÿ0,5]
[ÿ1,5;ÿ0,5] [3,7; 4.3]
aÿb=[a1;a2]ÿ [b1;b2]=[m(a)ÿm(b)ÿk; [m(a)ÿm(b)+k] (b2 + a2)ÿ(b1 + a1)
.
A n tartibli kvadrat matritsa va interval koeffitsienti shunday bo'lsin:
[ÿ1,5;ÿ0,5]
[3,7; 4,3]
[ÿ1,5;ÿ0,5]
.
ÿ
Agar a = [a1;a2] musbat bo'lsa, a sifatida belgilaymiz
1
An,n ÿBn,n=[0; 0] agar A = B bo'lsa
.
2
a
ÿ
ÿ
intervalli koeffitsientli matritsalar holatidan oraliqdagi un intervalli
matritsaning aniqlovchisi bundan mustasno.
A oraliq koeffitsienti n o'lchamli simmetrik kvadrat matrisa bo'lsin . 1
dan n gacha bo'lgan p uchun Ap = (ai j) n matritsaning determinantlari
asosiy minorlar deb ataymiz .
ÿ
.
.
ÿ
Ko'rinib turibdiki, bu belgi bilan biz × a = a ga egamiz
a×b=[a1;a2]×[b1;b2]=[m(a)×m(b)ÿk; [m(a)×(b)+k] bunda k =
min(m(a)×m(b)ÿa,bÿ (m(a)×m(b)) a = min(a1b1,a1b2,
a2b1,a2b2) va b = max(a1b1,a1b2,a2b1,a2b2)
.

Yüklə 181,58 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin