Problem 12302
(American Mathematical Monthly, Vol.129, February 2022)
Proposed by M. Omarjee (France).
Let
n
be a positive integer, and let
A
be the
2
n
-by-
2
n
skew-symmetric matrix with
(
j, k
)
-entry
sin(
j
−
k
)
/
sin(
j
+
k
)
. Prove
det(
A
) =
Y
1
≤
j≤
2
n
sin(
j
−
k
)
sin(
j
+
k
)
2
.
Solution proposed by Roberto Tauraso, University of Rome Tor Vergata, Rome, Italy.
Solution.
We will show that
det (
M
n
) =
Y
1
≤
j≤
2
n
x
j
−
x
k
x
j
+
x
k
2
(1)
where
M
n
is 2
n
-by-2
n
skew-symmetric matrix with (
j, k
)-entry
f
j,k
=
x
j
−
x
k
x
j
+
x
k
.
Then the result follows by letting
x
j
= tan(
j
):
sin(
j
−
k
)
sin(
j
+
k
)
=
sin(
j
) cos(
k
)
−
cos(
j
) sin(
k
)
sin(
j
) cos(
k
)
−
cos(
j
) sin(
k
)
=
tan(
j
)
−
tan(
k
)
tan(
j
) + tan(
k
)
=
x
j
−
x
k
x
j
+
x
k
.
We prove (1) by induction with respect to
n
.
It is trivial for
n
= 1. As regards the induction step, we notice that
M
n
+2
=
f
1
,
1
· · ·
f
1
,n
f
1
,n
+1
f
1
,n
+2
..
.
. ..
..
.
..
.
..
.
f
n,
1
· · ·
f
n,n
f
n,n
+1
f
n,n
+2
−
f
1
,n
+1
· · ·
−
f
n,n
+1
0
f
n
+1
,n
+2
−
f
1
,n
+2
· · ·
−
f
n,n
+2
−
f
n
+1
,n
+2
0
has the same determinant as the matrix
g
1
,
1
· · ·
g
1
,n
0
0
..
.
. ..
..
.
..
.
..
.
g
n,
1
· · ·
g
n,n
0
0
−
f
1
,n
+1
· · ·
−
f
n,n
+1
0
f
n
+1
,n
+2
−
f
1
,n
+2
· · ·
−
f
n,n
+2
−
f
n
+1
,n
+2
0
where we substracted from the first
n
rows a suitable multiple of the last two rows in order to get
zero in the last two entries. It can be verified that
g
j,k
=
f
j,k
+
f
j,n
+2
f
k,n
+1
−
f
j,n
+1
f
k,n
+2
f
n
+1
,n
+2
=
f
j,k
f
j,n
+1
f
j,n
+2
f
k,n
+1
f
k,n
+2
,
hence we may conclude
det(
M
n
+2
) = det([
g
j,k
])
·
f
2
n
+1
,n
+2
= det(
M
n
)
·
n
Y
j
=1
(
f
j,n
+1
f
j,n
+2
)
·
n
Y
k
=1
(
f
k,n
+1
f
k,n
+2
)
·
f
2
n
+1
,n
+2
=
Y
1
≤
j≤
2
n
f
2
j,k
·
n
Y
j
=1
(
f
j,n
+1
f
j,n
+2
)
2
·
f
2
n
+1
,n
+2
=
Y
1
≤
j≤
2
n
+2
f
2
j,k
and we are done.
Dostları ilə paylaş: |