Sat math Essentials



Yüklə 10,64 Kb.
Pdf görüntüsü
səhifə46/121
tarix27.12.2023
ölçüsü10,64 Kb.
#199093
1   ...   42   43   44   45   46   47   48   49   ...   121
SAT Math Essentials

a.
x
8
y
3
b.
x
12
y
7
c.
x
20
y
25
d.
x
5
y
10
e.
x
2
y
3
Answer
d.
Answer choice 
a
: |(
8) 
(
3)| 
|(
8) 
3| 
|
5| 
5
Answer choice 
b
: |12 
7| 
|5| 
5
Answer choice 
c
: |(
20) 
(
25)| 
|(
20) 
25| 
|5| 
5
Answer choice 
d
: |(
5) 
10| 
|
15| 
15
Answer choice 
e
: |(
2) 
3| 
|
5| 
5
Therefore, the values of
x
and 
y
in answer choice 
d
make the equation NOT true.

N U M B E R S A N D O P E R AT I O N S R E V I E W

5 3


R u l e s f o r Wo r k i n g w i t h P o s i t i v e a n d N e g a t i v e I n t e g e r s
Multiplying/Dividing

When multiplying or dividing two integers, if the signs are the same, the result is positive.
Examples
negative 
positive 
negative


15
positive 
positive 
positive
15

3
negative 
negative 
positive


15
negative 
negative 
positive
15 

3

When multiplying or dividing two integers, if the signs are different, the result is negative:
Examples
positive 
negative 
negative


15
positive 
negative 
negative
15 

3
Adding

When adding two integers with the same sign, the sum has the same sign as the addends.
Examples
positive 
positive 
positive


7
negative 
negative 
negative


7

When adding integers of different signs, follow this two-step process:
1.
Subtract the absolute values of the numbers. Be sure to subtract the lesser absolute value from the greater
absolute value.
2.
Apply the sign of the larger number
Examples


First subtract the absolute values of the numbers: |6| 
|
2| 


4
Then apply the sign of the larger number: 6.
The answer is 4.

12
First subtract the absolute values of the numbers: |
12| 
|7| 
12 

5
Then apply the sign of the larger number:
12.
The answer is 
5.

N U M B E R S A N D O P E R AT I O N S R E V I E W

5 4


Subtracting

When subtracting integers, change all subtraction to addition and change the sign of the number being
subtracted to its opposite. Then follow the rules for addition.
Examples
(
12) 
(
15) 
(
12) 
(
15) 
3
(
6) 
(
9) 
(
6) 
(
9) 
3
Practice Question
Which of the following expressions is equal to 
9? 
a.
17 
12 
(
4) 
(
10)
b.
13 
(
7) 
36 
(
8)
c.

(
2) 
14 
(
11)
d.
(
10 
4) 
(

5) 
6
e.
[
48 
(
3)] 
(28 
4)
Answer
c.
Answer choice 
a
:
17 
12 
(
4) 
(
10) 
9
Answer choice 
b
: 13 
(
7) 
36 
(
8) 
8
Answer choice 
c
:

(
2) 
14 
(
11) 
9
Answer choice 
d
: (
10 
4) 
(

5) 

21
Answer choice 
e
: [
48 
(
3)] 
(28 
4) 
9
Therefore, answer choice 
c
is equal to 
9.
D e c i m a l s
Memorize the order of place value:
3
T
H
O
U
S
A
N
D
S
7
H
U
N
D
R
E
D
S
5
T
E
N
S
9
O
N
E
S

D
E
C
I
M
A
L
P
O
I
N
T
1
T
E
N
T
H
S
6
H
U
N
D
R
E
D
T
H
S
0
T
H
O
U
S
A
N
D
T
H
S
4
T
E
N
T
H
O
U
S
A
N
D
T
H
S

N U M B E R S A N D O P E R AT I O N S R E V I E W

5 5


The number shown in the place value chart can also be expressed in expanded form:
3,759.1604 
(3 
1,000) 
(7 
100) 
(5 
10) 
(9 
1) 
(1 
0.1) 
(6 
0.01) 
(0 
0.001) 
(4 
0.0001)
Comparing Decimals
When comparing decimals less than one, line up the decimal points and fill in any zeroes needed to have an equal
number of digits in each number.
Example
Compare 0.8 and 0.008.
Line up decimal points
0.8
00
and add zeroes
0.008.
Then ignore the decimal point and ask, which is greater: 800 or 8? 
800 is bigger than 8, so 0.8 is greater than 0.008.
Practice Question
Which of the following inequalities is true? 
a.
0.04 < 0.004
b.
0.17 < 0.017
c.
0.83 < 0.80
d.
0.29 < 0.3
e.
0.5 < 0.08
Answer
d.
Answer choice 
a
: 0.
040
> 0.
004
because 40 > 4. Therefore, 0.04 > 0.004. This answer choice is FALSE.
Answer choice 
b
: 0.
170
> 0.
017
because 170 > 17. Therefore, 0.17 > 0.017. This answer choice is FALSE.
Answer choice 
c
: 0.
83
> 0.
80
because 83 > 80. This answer choice is FALSE.
Answer choice 
d
: 0.
29
< 0.
30
because 29 < 30. Therefore, 0.29 < 0.3. This answer choice is TRUE.
Answer choice 
e
: 0.
50
> 0.
08
because 50 > 8. Therefore, 0.5 > 0.08. This answer choice is FALSE.
F r a c t i o n s
Multiplying Fractions
To multiply fractions, simply multiply the numerators and the denominators:
a
b
d
c
b
a
d
c
5
8
3
7
5
8
3
7
1
5
5
6
3
4
5
6
3
4
5
6
1
2
5
4

N U M B E R S A N D O P E R AT I O N S R E V I E W

5 6


Practice Question
Which of the following fractions is equivalent to 
2
9
3
5
?
a.
4
5
5
b.
4
6
5
c.
1
5
4
d.
1
1
0
8
e.
3
4
7
5
Answer
b.
2
9
3
5
2
9
3
5
4
6
5
Reciprocals
To find the reciprocal of any fraction, swap its numerator and denominator.
Examples
Fraction:
1
4
Reciprocal:
4
1
Fraction:
5
6
Reciprocal:
6
5
Fraction:
7
2
Reciprocal:
2
7
Fraction:
x
y
Reciprocal:
x
y
Dividing Fractions
Dividing a fraction by another fraction is the same as multiplying the first fraction by the 
reciprocal
of the sec-
ond fraction:
a
b
d
c
a
b
d
c
a
b
d
c
3
4
2
5
3
4
5
2
1
8
5
3
4
5
6
3
4
6
5
3
4
6
5
1
2
8
0
Adding and Subtracting Fractions with Like Denominators
To add or subtract fractions with like denominators, add or subtract the numerators and leave the denominator
as it is:
a
c
b
c
a
c
b
1
6
4
6
1
6
4
5
6
a
c
b
c
a
c
b
5
7
3
7
5
7
3
2
7
Adding and Subtracting Fractions with Unlike Denominators
To add or subtract fractions with unlike denominators, find the 
Least Common Denominator
, or 
LCD
, and con-
vert the unlike denominators into the LCD. The LCD is the smallest number divisible by each of the denomina-
tors. For example, the LCD of
1
8
and 
1
1
2
is 24 because 24 is the least multiple shared by 8 and 12. Once you know
the LCD, convert each fraction to its new form by multiplying both the numerator and denominator by the nec-
essary number to get the LCD, and then add or subtract the new numerators.

N U M B E R S A N D O P E R AT I O N S R E V I E W

5 7


Example
1
8
1
1
2
LCD is 24 because 8 

24 and 12 

24.
1
8

3
8

2
3
4
Convert fraction.
1
1
2

1
2
2

2
2
4
Convert fraction.
2
3
4
2
2
4
2
5
4
Add numerators only.
Example
4
9
1
6
LCD is 54 because 9 

54 and 6 

54.
4
9

6
9

2
5
4
4
Convert fraction.
1
6

9
6

5
9
4
Convert fraction.
2
5
4
4
5
9
4
1
5
5
4
1
5
8
Subtract numerators only. Reduce where possible.
Practice Question
Which of the following expressions is equivalent to 
5
8
3
4
?
a.
1
3
1
2
b.
3
4
5
8
c.
1
3
2
3
d.
1
4
2
1
1
2
e.
1
6
3
6
Answer
a.
The expression in the equation is 
5
8
3
4
5
8
4
3
5
8
4
3
2
2
0
4
5
6
. So you must evaluate each answer
choice to determine which equals 
5
6
.
Answer choice 
a
:
1
3
1
2
2
6
3
6
5
6
.
Answer choice 
b
:
3
4
5
8
6
8
5
8
1
8
1
.
Answer choice 
c
:
1
3
2
3
3
3
6
6
1.
Answer choice 
d
:
1
4
2
1
1
2
1
5
2
.
Answer choice 
e
:
1
6
3
6
4
6
.
Therefore, answer choice 
a
is correct.

N U M B E R S A N D O P E R AT I O N S R E V I E W

5 8


S e t s
Sets
are collections of certain numbers. All of the numbers within a set are called the 
members
of the set.
Examples
The set of integers is { . . .
3,
2 ,
1, 0, 1, 2, 3, . . . }.
The set of whole numbers is {0, 1, 2, 3, . . . }.
Intersections
When you find the elements that two (or more) sets have in common, you are finding the 
intersection
of the sets.
The symbol for intersection is 
.
Example
The set of negative integers is { . . . ,
4, –3,
2,
1}.
The set of even numbers is { . . . ,
4,
2, 0, 2, 4, . . . }.
The intersection of the set of negative integers and the set of even numbers is the set of elements (numbers)
that the two sets have in common:
{ . . . ,
8,
6,
4,
2}.
Practice Question
Set 
X
even numbers between 0 and 10
Set 
Y
prime numbers between 0 and 10
What is 
X
Y
?
a.
{1, 2, 3, 4, 5, 6, 7, 8, 9}
b.
{1, 2, 3, 4, 5, 6, 7, 8}
c.
{2}
d.
{2, 4, 6, 8}
e.
{1, 2, 3, 5, 7}
Answer
c.
X
Y
is “the intersection of sets 
X
and 
Y
.” The intersection of two sets is the set of numbers shared by
both sets. Set 
X
{2, 4, 6, 8}. Set 
Y
{1, 2, 3, 5, 7}. Therefore, the intersection is {2}.

Yüklə 10,64 Kb.

Dostları ilə paylaş:
1   ...   42   43   44   45   46   47   48   49   ...   121




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin