Recibido: 8 de diciembre de 2006. Aceptado: 19 de febrero de 2007



Yüklə 225.94 Kb.
Pdf просмотр
tarix11.08.2017
ölçüsü225.94 Kb.

Revista CENIC Ciencias Químicas, Vol. 38, No. 3, 2007.

363

Recibido:  8 de diciembre de 2006.         Aceptado:  19 de febrero de 2007.

Palabras clave:  Eugenia stipitata, Myrtaceae, arazá, compuestos volátiles, octanoato de etilo, decanoato de etilo, dodecanoato de etilo.

Key words:  Eugenia stipitata, Myrtaceae, arazá, volatile compounds, ethyl octanoate, ethyl decanoate, ethyl dodecanoate.

Volatile compounds of arazá fruit (Eugenia

stipitata McVaught)

Jorge A. Pino y Clara Elizabeth Quijano*

Instituto de Investigaciones para la Industria Alimenticia, Carretera al Guatao kilómetro 3½, La Habana, Código Postal

19200, Cuba. E-mail: jpino@iiia.edu.cu. *Universidad de los Andes, Facultad de Ciencias, Departamento de Química, Cra. 1

a

Este No. 18-A-10 Edif. (Q-826), Bogotá, Colombia. E-mail: cquijano@uniandes.edu.co



Correspondencia:

Dra.Clara Elizabeth Quijano Celís

Universidad de los Andes, Facultad de Ciencias, Departamento de Química, Cra. 1

a

 Este No. 18-A-10 Edif. (Q-826), Bogotá,

Colombia.

 E-mail: cquijano@uniandes.edu.co

RESUMEN. El arazá (Eugenia stipitata McVaugh) es nativo de la parte peruana

de la selva amazónica. La fruta es una esfera, caracterizada por su intenso aro-

ma y sabor ácido, así como color de la piel verde a amarillo al madurar. La parte

comestible, una pulpa cremosa blanca se come fresca o es usada para preparar

jugos, mermeladas, helados y licores. Los compuestos volátiles se aislaron del

arazá mediante extracción líquida-líquida continua con el uso de pentano-

diclorometano [1 : 1 (v/v)] durante 8 h y se analizaron por cromatografía de gases

capilar con detector de ionización con llama de hidrógeno y cromatografía de

gases-espectrometría de masas con el uso de columnas capilares del tipo HP-

Innowax. El extracto concentrado obtenido mostró notas aromáticas similares

al aroma de la fruta fresca, descrito como dulce-verdoso-frutal. Como resultado,

se obtuvieron 7,9 mg de compuestos volátiles por kilogramo de fruta fresca. En

total, se identificaron 27 ésteres, 20 terpenos, cinco alcoholes, seis compuestos

carbonílicos, cinco ácidos, tres hidrocarburos, dos lactonas y dos compuestos

azufrados. De los 70 constituyentes identificados, 53 se reportan por primera

vez en esta fruta. Los ésteres (54,8 % del total de la composición) fueron la clase

de compuestos más abundante. El octanoato de etilo, dodecanoato de etilo y

decanoato de etilo fueron los componentes mayoritarios. Otros compuestos sig-

nificativos fueron: el etanol, 1-hexanol, globulol, ácido 2-metilbutanoico, ácido

hexanoico, ácido octanoico, 3-metil-2-buten-1-ol y 2-furfural.



ABSTRACT. The arazá (Eugenia stipitata McVaugh) is native from the Peru-

vian part of the Amazonian forest. The fruit is a sphere, characterized by its

intense aroma and acid flavor and green to yellow peel at maturity. The edible

part, a creamy-white pulp, is eaten fresh or is used to prepare juices, marma-

lades, ice creams and liquors. Volatile compounds were isolated from arazá by

continuous liquid-liquid extraction using pentane-dichloromethane [1 : 1 (v/v)]

for 8 h, and analyzed by GC-FID and GC-MS using HP-Innowax fused silica

column. The concentrated extract showed aroma notes resembling the flavor of

fresh fruit, described as sweet-green-fruity. A total amount of 7.9 mg of volatile

compounds per kilogram of fresh fruit was obtained. In total, 27 esters, 20 terpe-

nes, five alcohols, six carbonyls, five acids, three hydrocarbons, two lactones

and two sulfur-compounds were identified. Of the 70 components identified, 53

are reported for the first time in this fruit. Esters (54.8 % of the total composi-

tion) were the most abundant compound class. Ethyl octanoate, ethyl dodecanoate

and ethyl decanoate were found to be the major constituents. Other significant

compounds were: ethanol, 1-hexanol, globulol, 2-methylbutanoic acid, hexanoic

acid, octanoic acid, 3-methyl-2-buten-1-ol and 2-furfural.

INTRODUCTION

Colombia has a natural diversity

of tropical fruits with distinctive ex-

otic flavors appealing to the pro-

ducer that they could be an impor-

tant source of income. However, the

volatile composition responsible for

their flavors has not yet been char-

acterized widely. Among them, arazá

(Eugenia stipitata McVaught), be-

longing to the Myrtaceae family, is

an indigenous Amazonian tree wide-

spread in different regions of Colom-

bia. This fruit is also known as araça-

boi in Brazil or as pichi or sororia in

Peru. The fruit, characterized by its

intense aroma and acid flavor, is

round, about 12-15 cm in diameter,

800 g maximum weight, and green

to yellow peel at maturity. The ed-

ible part, a creamy-white pulp, is

eaten fresh or is used to prepare

juices, marmalades, ice creams and

liquors.


1-3

As far it is known, there are

only two reports on the composi-

tion of the volatile compounds of

this fruit.

4,5


 In both works, 30 and

65 volatiles were identified, re-

spectively.

The main purpose of this study

was to identify additional arazá fruit

(Eugenia stipitata McVaught) com-

pounds that may contribute to its

delicate flavor.



Revista CENIC Ciencias Químicas, Vol. 38, No. 3, 2007.

364

MATERIALS AND METHODS

Fresh mature arazá fruits were

picked from bushes grown in Caquetá,

Colombia, and transported by airplane

to the laboratory within 24 h after har-

vest. The fruits were allowed to ripen

at room temperature. After separation

of the skin and seeds the pulp was

gently bended in a commercial

blender. The blended pulp was im-

mediately subjected to extraction.

Isolation of volatile compounds

was made by the following proce-

dure: an aliquot of blended pulp

(1 kg) was diluted with distilled wa-

ter (1 L) and centrifuged at 10 000 r

/min for 20 min . Decanol (0.25 mg)

was added as internal standard be-

fore the liquid-liquid extraction. The

supernatant was continuously ex-

tracted with pentane-dichloromethane

[1 : 1 (v/v)] for 8 h . The organic phase

was dried over anhydrous sodium sul-

fate and concentrated to 0.2 mL on a

Kuderna-Danish evaporator with a

15-cm Vigreux column. Extractions

were made by triplicate.

An HP 6890 GC with a FID, equip-

ped with an HP-Innowax fused silica

column (60 m X 0.25 mm X 0.25 

µ

m

film thickness) was employed. The



column temperature was program-

med as follows: 50 

o

C hold 4 min, to



220 

o

C at 4 



o

C/min, then hold 10 min.

Nitrogen carrier gas was used at a

flow rate of 1 mL/min . The injector

and detector were maintained at

230 


o

C . Sample injection volume was

µ

L with a split ratio of 1 : 10. Lin-



ear retention indices were calculated

using n-paraffin standards.

6

An HP 6890 Series II equipped



with a mass selective detector HP-

5973N and the same capillary col-

umn and temperature program as in

GC-FID technique was used. He-

lium carrier gas was used at a flow

rate of 1 mL/min . Mass spectra were

recorded in the electron-impact

mode at 70 eV by 1.8 scans/s . Detec-

tion was performed in the scan mode

between 30 and 400 Daltons.

Compounds were identified by

comparing their spectra to those of

authentic standards, those in NIST

library or literature

7-9

 and also, in



many cases, by comparison of their

GC linear retention indices to those

of standard compounds.

Quantitative analysis was made

by the internal standard method

from the electronic integration of

the FID peak areas without the use

of correction factors.



RESULTS AND DISCUSSION

The volatile compounds of arazá

fruit were obtained by liquid-liquid

extraction and analyzed by GC-FID

and GC-MS. A valid aroma concen-

trate was prepared by using an es-

tablished procedure with an accept-

able extraction efficiency (> 80 %

recovery) and low danger of artifact

formation.

10-12

 The concentrated ex-



tract showed aroma notes resem-

bling the flavor of fresh fruit, de-

scribed as sweet-green-fruity.

Table 1 presents identified com-

pounds with their concentrations.

Quantitations were based upon

GC-FID peak integration data, so

accuracy is potentially limited by

a number of factors, including co-

elution of two or more components

and differences in FID response fac-

tors among compounds. The quan-

titative data (Table 1) shows that to-

tally 7.9 mg of volatile compounds

per kilogram of fresh fruit were ob-

tained.


In total, 27 esters, 20 terpenes,

five alcohols, six carbonyls, five  ac-

ids, three hydrocarbons, two lac-

tones and two sulfur-compounds

were identified. Of the 70 compo-

nents identified, 53 are reported for

the first time.

According to class of compounds,

esters dominate the volatiles profile.

These compounds that constitute

over 54.8 % of the total volatiles in-

clude many ethyl and hexyl esters.

Of them, ethyl octanoate, ethyl

dodecanoate and ethyl decanoate

were found to be the major ones. In

one previous result

 

about arazá fruit,



the amount of esters was low,

4

whereas in the other report they



were in significant amounts. These

discrepancies may be related to the

stage of ripeness of the fruit when

sampled, different cultivars or geo-

graphical regions and the isolation

method. Two identified lactones, 

δ

-

decalactone and 



γ

-dodecalactone, were

reported for the first time in arazá

fruit.


In the terpene group, many

monoterpene and sesquiterpenes

were identified, with the major rep-

resentatives being globulol and



Table 1. Volatile constituents of arazá fruit.

d

n



u

o

p



m

o

C



n

o

i



t

a

c



i

f

i



t

n

e



d

I

2



I

R

3



t

n

u



o

m

A



)

g

k



/

g

µ



(

e

t



a

t

e



c

a

l



y

h

t



E

1

C



G

,

S



M

4

2



8

3

4



l

o

n



a

h

t



E

1

C



G

,

S



M

8

9



8

6

6



5

α

e



n

e

n



i

P

-



C

G

,



S

M

2



1

0

1



t

e

t



a

o

n



a

t

u



b

l

y



h

t

E



1

C

G



,

S

M



1

2

0



1

0

1



e

t

a



o

n

a



t

u

b



l

y

h



t

e

m



-

2

l



y

h

t



E

1

C



G

,

S



M

0

4



0

1

4



1

β

e



n

e

n



i

P

-



C

G

,



S

M

5



1

1

1



t

e

n



e

c

r



y

M

C



G

,

S



M

0

4



1

1

t



l

a

n



e

t

n



e

p

-



2

-

l



y

h

t



e

M

-



2

1

S



M

2

5



1

1

0



6

e

t



a

o

n



a

x

e



h

l

y



h

t

E



1

C

G



,

S

M



0

2

2



1

t

l



o

-

1



-

n

e



t

u

b



-

2

-



l

y

h



t

e

M



-

3

1



C

G

,



S

M

1



3

2

1



5

9

2



-

)

E



(

β

e



n

e

m



i

c

O



-

C

G



,

S

M



1

4

2



1

8

3



e

t

a



t

e

c



a

l

y



x

e

H



1

C

G



,

S

M



1

6

2



1

0

5



1

e

n



e

l

o



n

i

p



r

e

T



C

G

,



S

M

0



7

2

1



t

e

n



o

n

a



t

u

b



-

2

-



y

x

o



r

d

y



H

-

3



1

C

G



,

S

M



5

7

2



1

4

5



e

t

a



o

n

a



p

o

r



p

l

y



x

e

H



C

G

,



S

M

1



2

3

1



4

5

e



t

a

o



n

a

t



u

b

o



s

i

l



y

x

e



H

1

C



G

,

S



M

5

2



3

1

2



3

l

o



n

a

x



e

H

-



1

C

G



,

S

M



0

4

3



1

3

1



3

l

o



n

e

x



e

H

-



3

-

)



Z

(

C



G

,

S



M

1

6



3

1

3



2

1

e



t

a

o



n

a

t



c

o

l



y

h

t



e

M

1



C

G

,



S

M

8



7

3

1



5

2

e



n

a

c



e

d

a



r

t

e



T

-

1



1

C

G



,

S

M



5

9

3



1

3

4



1

e

t



a

o

n



a

t

u



b

l

y



h

t

e



m

-

2



l

y

x



e

H

1



C

G

,



S

M

8



0

4

1



3

8

1



e

t

a



o

n

a



t

c

o



l

y

h



t

E

C



G

,

S



M

1

2



4

1

1



3

0

1



e

t

a



t

e

c



a

o

i



h

t

l



y

h

t



e

m

-



2

l

y



h

t

E



1

S

M



5

2

4



1

2

6



1

l

a



r

u

f



r

u

F



-

2

1



C

G

,



S

M

9



3

4

1



0

0

3



α

e

n



e

a

p



o

C

-



C

G

,



S

M

5



7

4

1



t

e

n



a

c

e



d

a

t



n

e

P



-

1

1



C

G

,



S

M

9



9

4

1



8

2


Revista CENIC Ciencias Químicas, Vol. 38, No. 3, 2007.

365

1

 Reported for the first time in this fruit.



Identification: MS mass spectra, GC comparison of retention indices with standards.

Linear retention indices reported on HP-Innowax capillary column.



t Represents less than 10 

µ

g/kg .



Table 1. (continued)

d

n



u

o

p



m

o

C



n

o

i



t

a

c



i

f

i



t

n

e



d

I

2



I

R

3



t

n

u



o

m

A



)

g

k



/

g

µ



(

e

t



a

o

n



a

t

u



b

y

x



o

r

d



y

h

-



3

l

y



h

t

E



C

G

,



S

M

2



0

5

1



3

4

β



e

n

e



l

o

b



a

s

i



B

-

1



C

G

,



S

M

8



0

5

1



t

e

t



a

o

n



a

n

o



n

l

y



h

t

E



1

C

G



,

S

M



9

1

5



1

9

2



e

t

a



o

n

e



t

c

o



-

2

-



)

E

(



l

y

h



t

E

1



C

G

,



S

M

2



3

5

1



5

2

e



t

a

o



n

a

p



o

r

p



o

i

h



t

l

y



h

t

e



m

-

3



l

y

h



t

E

1



C

G

5



3

5

1



5

2

l



a

r

u



f

r

u



f

-

2



-

l

y



h

t

e



M

-

5



1

C

G



,

S

M



8

5

5



1

0

0



1

l

o



n

a

t



c

o

l



y

h

t



e

M

-



2

1

C



G

,

S



M

5

6



5

1

1



4

β

e



n

e

l



l

y

h



p

o

y



r

a

C



-

C

G



,

S

M



1

7

5



1

t

e



t

a

o



n

a

x



e

h

l



y

x

e



H

1

C



G

,

S



M

2

9



5

1

8



5

1

l



a

n

a



t

n

e



p

l

y



h

t

e



m

-

2



-

y

x



o

r

d



y

H

-



3

1

S



M

2

0



6

1

t



e

t

a



o

n

a



c

e

d



l

y

h



t

E

C



G

,

S



M

1

2



6

1

6



1

5

e



t

a

o



n

a

x



e

h

l



y

n

e



x

e

H



-

3

-



)

Z

(



1

C

G



,

S

M



8

3

6



1

5

2



e

t

a



t

e

c



a

l

y



l

l

e



n

o

r



t

i

C



1

C

G



,

S

M



8

5

6



1

t

α



e

n

e



l

u

m



u

H

-



C

G

,



S

M

9



8

6

1



t

d

i



c

a

c



i

o

n



a

t

u



b

l

y



h

t

e



M

-

2



1

C

G



,

S

M



1

9

6



1

0

5



2

e

n



a

c

e



d

a

t



p

e

H



-

1

1



C

G

,



S

M

9



9

6

1



6

2

D



e

n

e



r

c

a



m

r

e



G

C

G



,

S

M



0

1

7



1

t

γ



e

n

e



l

o

r



u

u

M



-

1

C



G

,

S



M

3

1



7

1

5



2

β

e



n

e

l



a

h

c



a

m

i



H

-

1



C

G

,



S

M

6



1

7

1



5

2

e



t

a

o



n

a

c



e

d

n



u

l

y



h

t

E



1

C

G



,

S

M



1

2

7



1

6

1



-

)

Z



,

E

(



α

e

n



e

s

e



n

r

a



F

-

1



C

G

,



S

M

2



2

7

1



0

5

e



t

a

o



n

a

t



c

o

l



y

x

e



H

1

C



G

,

S



M

0

0



8

1

1



4

1

e



t

a

o



n

a

c



e

d

o



d

l

y



h

t

E



1

C

G



,

S

M



8

1

8



1

2

9



7

d

i



c

a

c



i

o

n



a

x

e



H

C

G



,

S

M



0

3

8



1

1

9



2

e

t



a

o

n



a

x

e



h

l

y



r

u

f



r

u

F



1

C

G



,

S

M



5

4

8



1

3

3



n

a

r



u

f

l



y

o

n



a

x

e



H

-

2



1

C

G



7

4

8



1

3

3



e

t

a



o

n

a



p

o

r



p

l

y



h

t

e



l

y

n



e

h

P



-

2

1



C

G

,



S

M

2



5

8

1



0

0

3



e

t

a



t

e

c



a

l

y



p

o

r



p

l

y



n

e

h



P

-

2



1

C

G



,

S

M



6

2

9



1

5

4



e

t

a



o

n

a



c

e

d



a

r

t



e

t

l



y

h

t



E

1

C



G

,

S



M

7

2



0

2

1



9

1

d



i

c

a



c

i

o



n

a

t



c

O

C



G

,

S



M

5

4



0

2

8



0

2

e



t

a

o



z

n

e



b

l

y



h

t

e



l

y

n



e

h

P



-

2

1



C

G

,



S

M

6



5

0

2



9

7

l



o

l

u



b

o

l



G

1

C



G

,

S



M

1

6



0

2

6



1

2

l



o

n

e



l

u

h



t

a

p



S

1

C



G

,

S



M

0

7



0

2

5



2

e

t



a

o

z



n

e

b



l

y

n



e

x

e



H

-

2



-

)

E



(

1

C



G

,

S



M

8

7



0

2

3



3

e

t



a

t

e



c

a

l



y

m

a



n

n

i



C

-

)



E

(

1



C

G

,



S

M

9



9

0

2



0

0

1



γ

l

o



m

s

e



d

u

E



-

1

C



G

,

S



M

5

3



1

2

t



l

o

n



i

d

a



C

-

T



1

C

G



,

S

M



8

3

1



2

3

8



δ

e

n



o

t

c



a

l

a



c

e

D



-

1

C



G

,

S



M

5

4



1

2

5



2

l

o



l

o

r



u

u

M



-

T

1



C

G

,



S

M

1



5

1

2



8

5

α



l

o

l



o

r

u



u

M

-



1

C

G



,

S

M



5

6

1



2

0

1



d

i

c



a

c

i



o

n

a



c

e

D



1

C

G



,

S

M



8

5

2



2

3

3



γ

e

n



o

t

c



a

l

a



c

e

d



o

D

-



1

C

G



,

S

M



6

1

3



2

5

5



e

t

a



o

n

e



c

e

d



a

t

c



o

-

9



-

)

E



(

l

y



h

t

e



M

1

S



M

8

3



4

2

5



8

d

i



c

a

c



i

o

n



a

c

e



d

o

D



1

C

G



,

S

M



8

3

6



1

1

4



(E,Z)-

α

-farnesene. Germacrene D,



reported in a previous study as the

most abundant compound,

4

 was only



detected in traces in the present

study.


Alcohols and carbonyls com-

pounds represented 17.0 and 6.9 %

of the total volatiles. Of them, etha-

nol, 1-hexanol and 3-methyl-2-buten-

1-ol were the major alcohols, whereas

2-furfural was the most abundant

carbonyl compound.

The presence of some acids (6.8 %)

and n-paraffins (2.5 %) should not

significantly contribute to fruit fla-

vor, due to the high thresholds of

these compounds.

13

 Two sulfur-com-



pounds not reported previously,

ethyl 2-methylthioacetate and ethyl

3-methylthiopropanoate were iden-

tified. On the other hand, methyl 3-

methylthipropanoate which was pre-

viously reported,

5

 was not found in



the present study.

Certainly, many of the found

compounds (Table 1) should make

important contributions to the over-

all arazá flavor, particularly the esters,

with their relative low threshold.

13

Many of the esters found in arazá



which seems to be strong contribu-

tors to tropical fruit aromas have also

been found in a variety of other

tropical and subtropical fruits. Ethyl

and hexyl esters similar to those

found in this study have been iden-

tified as important contributors of

tropical fruit flavors in papaya,

14

 pas-


sion fruit,

15

 guava,



16

 pineapple,

17

 lulo


fruit,

18

 and mango.



19

CONCLUSIONS

Volatile compounds were isolated

from araza fruit (7.9 mg/kg of fresh

fruit). In total, 27 esters, 20 terpenes,

five alcohols, six carbonyls, five ac-

ids, three hydrocarbons, two lac-

tones and two  sulfur-compounds

were identified. Of the 70 compo-

nents identified, 53 are reported for

the first time. Esters (54.8 % of the

total composition) were the most

abundant compound class. Ethyl

octanoate, ethyl dodecanoate and

ethyl decanoate were found to be the

major constituents.

ACKNOWLEDGMENTS

Grateful acknowledgements are

expressed to the Faculty of Sciences

of the University of the Andes for the

financial support. We thank Jaime

Campos for supplying the fruits

used in this study.

BIBLIOGRAPHY

1. Do N. Ferreira S.A. Biometría de frutos

de araça-boi (Eugenia stipitata


Revista CENIC Ciencias Químicas, Vol. 38, No. 3, 2007.

366

McVaugh). Acta Amazonica, 22, 295-

302, 1992.

  2. Clement C.R. and da Silva D.F. Ama-

zonian small fruits with commercial

potential. Fruit Varieties Journal, 48,

152-158, 1994.

  3. Rogez H., Buxant R., Mignolet E.,

Souza J.N.S., Silva E.M. and Laron-

delle Y. Chemical composition of the

pulp of three typical Amazonian

fruits: araça-boi (Eugenia stipitata),

bacuri (Platonia insignis) and

cupuaçu (Theobroma grandiflorum).



European Food Research Technol-

ogy, 218, 380–384, 2004.

  4. Franco M.R.B. and Shibamoto T.

Volatile composition of some Brazil-

ian fruits: umbu-caja (Spondias



citherea), camu-camu (Myrciaria du-

bia), araça-boi (Eugenia stipitata),

and cupuaçu (Theobroma grandi-



florum).  J. Agric. Food Chem., 48,

1263-1265, 2000.

5. Fajardo A., Delgado J.L., Morales A.

L. and Duque C. Flavor studies on

some Amazonian fruits. 2. Free and

bound volatiles of arazá (Eugenia



stipitata Mac Vaugh) pulp fruit. 11th

International Flavour Conference

2004, Samos, Greece, 2005.

6. Majlat P., Erdos Z. and Tacas J. Cal-

culation and application of retention

indices in programmed temperature

gas chromatography. J. Chromatogr.,

91, 89-110, 1974.

  7. Jennings W. and Shibamoto T. Quali-

tative Analysis of Flavor and Fra-

grance Volatiles by Glass Capillary

Gas Chromatography. Academic

Press, New York, 1980.

  8. MacLafferty F.W. and Staffer D.B.

The Wiley/NBS. Registry of Mass

Spectral Data. New York, John Wiley

& Sons, 1989.

  9. Adams R.P. Identification of Essen-

tial Oil Components by Gas Chroma-

tography/Quadrupole Mass Spectros-

copy. Allured Publishing Corp., Carol

Stream, Illinois, 2001.

10. Drawert F. and Rapp A. Gas-

C h r o m a t o g r a p h i s c h e

Untersuchung pflanzlicher Aromen.

I. Anreicherung, Trennung, Iden-

tifizierung von flüchtigen Aro-

mastoffen in Traubenmost und

Wein. Chromatographia, 1, 446-457,

1968.

11. Morales A.L., Albarracín D., Rodrí-



guez J., Duque C., Riaño L.E. and

Espitia J. Volatile constituents from

Andes berry (Rubus glaucus Benth.).

J. High Resolution Chromatogr., 19,

585-587,1996.

12. Parada F., Duque C. and Fujimoto Y.

Free and bound volatile composition

and characterization of some gluco-

conjugates as aroma precursors in

melón de olor fruit pulp (Sicana

odorifera). J. Agric. Food Chem., 48,

6200-6204, 2000.

13. Van Gemert L.J. and Nettenbreijer

A.H. Compilation of odor threshold

values in air and water. Zeist, Neth-

erlands, CIVO-TNO, 1977.

14. Pino J., Almora K. and Marbot R.

Volatile components of papaya

(Carica papaya L., Maradol variety).

Flav. Fragr. J., 18492-496, 2003.

15. Shibamoto T. and Tang C.S. Minor

tropical fruits- mango, papaya, pas-

sion fruit and guava. In Food

Flavours. Part C: The Flavour of

Fruits, I.D. Morton and A.J. Mac Leod

(ed.), 221-280, Elsevier, Amsterdam,

1990.


16. Pino J., Ortega A. and Rosado A. Vola-

tile constituents of guava (Psidium



guajava L.) fruits from Cuba. J. Es-

sential Oil Res., 11, 623-628, 1990.

17. Umano K., Hagi Y., Nakahara K.,

Shoiji A. and Shibamoto T. Volatile

constituents of green and ripened

pineapple (Ananas comosus [L.]

Merr.). J. Agric. Food Chem., 40, 599-

606, 1992.

18. Suárez M. and Duque C. Change in

volatile compounds during lulo

(Solanum vestissimum D.) fruit matu-

ration. J. Agric. Food Chem., 40, 647-

649, 1992.

19. Pino J., Mesa J., Muñoz Y., Martí M.

P. and Marbot R. Volatile components

from mango (Mangifera indica L.)

cultivars.  J. Agric. Food Chem.,  53,



2213-2223, 2005.


Поделитесь с Вашими друзьями:


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2019
rəhbərliyinə müraciət

    Ana səhifə