tions to circumvent bacterial adaptation and due to the paucity of new drugs in the pharmaceu-
tical company pipelines [
39
], our strategy could constitute an opportunity for neglected
molecules to be rejuvenated by using
“escort molecules” to improve their action. Our study
paves the way for this type of new original antibacterial strategies.
Supporting Information
S1 Fig. Results of the screening procedure.
(
Ã
) the compounds NV730, NV731, NV716 and
NV720 are the compounds 1, 2, 3, 4 selected in this study respectively. (
ÃÃ
) The concentration
of 10
μM used in this study is over the MIC of Pseudomonas aeruginosa strain PA01 for poly-
myxin-B.
(TIFF)
S2 Fig. Determination of LogD and protonated species for derivative 3.
All LogD and pro-
tonated species involved for derivative 3 have been determined by using chemical simulation
software Marvin Sketch 5.11.3.
(PDF)
S3 Fig. Inner membrane depolarization by 3.
The membrane potential disruption was fol-
lowed by monitoring Disc
3
(5) fluorescence.
(PDF)
S1 Table. Description of the clinical isolates.
The antibiotic resistance of each isolate for com-
monly used antibiotics and the MIC for doxycycline are indicated.
(PDF)
S2 Table. Results of the checkerboard assay.
For each concentration of the combination
between, (a) doxycycline and compound 3; (b) doxycycline and PAßN, the FIC index is indi-
cated.
(PDF)
S3 Table. Results of the synergy assays of compound 3 with representative anti-pseudomo-
nal agents.
(PDF)
Acknowledgments
We are grateful to Professor Patrick Plésiat (Université de Franche-Comté, Besançon, France)
for providing us with strains and for helpful and stimulating discussions. We acknowledge M.
deMéo and C. diGiorgio from the laboratory of biogenotoxicology and environmental muta-
genesis (school of Pharmacy, Marseille) for their contribution to the cytotoxicity assays, and
Dr. V. Mejean (Laboratoire de Bioénergétique et Ingénierie des protéines, Marseille, France)
for reading the manuscript and providing suggestions.
Inhibitors of Antibiotic Resistance in Pseudomonas
PLOS ONE | DOI:10.1371/journal.pone.0154490
May 6, 2016
14 / 16
Author Contributions
Conceived and designed the experiments: J. Bolla J. Brunel EG. Performed the experiments:
DB AL HT. Analyzed the data: J. Bolla J. Brunel JMP EG DB. Contributed reagents/materials/
analysis tools: EG J. Bolla J. Brunel JMP. Wrote the paper: DB J. Bolla J. Brunel.
References
1.
Xu Z-Q, Flavin MT, Flavin J. Combating multidrug-resistant Gram-negative bacterial infections. Expert
Opin Investig Drugs. 2014; 23(2): 163
–82. doi:
10.1517/13543784.2014.848853
PMID:
24215473
2.
Karaiskos I, Giamarellou H. Multidrug-resistant and extensively drug-resistant Gram-negative patho-
gens: current and emerging therapeutic approaches. Expert Opin Pharmacother. 2014; 15(10): 1351
–
70. doi:
10.1517/14656566.2014.914172
PMID:
24766095
3.
Bassetti M, Merelli M, Temperoni C, Astilean A. New antibiotics for bad bugs: where are we? Ann Clin
Microbiol Antimicrob. 2013; 12(1): 22. doi:
10.1186/1476-0711-12-22
4.
Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J
Med Microbiol. 2013; 303(6
–7): 287–92. doi:
10.1016/j.ijmm.2013.02.009
PMID:
23499305
5.
Davin-Regli A, Bolla J-M, James CE, Lavigne J-P, Chevalier J, Garnotel E, et al. Membrane permeabil-
ity and regulation of drug
“influx and efflux” in enterobacterial pathogens. Curr Drug Targets. 2008; 9
(9): 750
–9. PMID:
18781921
6.
Schweizer HP. Understanding efflux in Gram-negative bacteria: opportunities for drug discovery. Expert
opinion on drug discovery. 2012; 7(7): 633
–42. doi:
10.1517/17460441.2012.688949
PMID:
22607346
7.
Pag
ès J-M, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion
barrier in Gram-negative bacteria. Nat Rev Micro. 2008; 6(12): 893
–903.
8.
Morita Y, Tomida J, Kawamura Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front
Microbiol 2014; 4. doi:
10.3389/fmicb.2013.00422
9.
Mamelli L, Petit S, Chevalier J, Giglione C, Lieutaud A, Meinnel T, et al. New antibiotic molecules:
bypassing the membrane barrier of gram negative bacteria increases the activity of peptide deformy-
lase inhibitors. PLoS ONE. 2009; 4(7): e6443. doi:
10.1371/journal.pone.0006443
PMID:
19649280
10.
Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst
nightmare? Clin Infect Dis. 2002; 34(5): 634
–40. PMID:
11823954
11.
Okamoto K, Gotoh N, Nishino T. Extrusion of penem antibiotics by multicomponent efflux systems
MexAB-OprM, MexCD-OprJ, and MexXY-OprM of Pseudomonas aeruginosa. Antimicrob Agents Che-
mother. 2002; 46(8): 2696
–9. PMID:
12121960
12.
Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front
Microbiol. 2012; 3: 408. doi:
10.3389/fmicb.2012.00408
PMID:
23233851
13.
Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Substrate specificities of MexAB-
OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents
Chemother. 2000; 44(12): 3322
–7. PMID:
11083635
14.
Hocquet D, Roussel-Delvallez M, Cavallo J-D, Plésiat P. MexAB-OprM- and MexXY-overproducing
mutants are very prevalent among clinical strains of Pseudomonas aeruginosa with reduced suscepti-
bility to ticarcillin. Antimicrob Agents Chemother. 2007; 51(4): 1582
–3. PMID:
17220417
15.
Li XZ, Nikaido H, Poole K. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 1995; 39(9): 1948
–53. PMID:
8540696
16.
Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX-MexY-
oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother.
2000; 44(9): 2242
–6. PMID:
10952562
17.
Brunel JM, Lieutaud A, Lome V, Pag
ès J-M, Bolla J-M. Polyamino geranic derivatives as new chemo-
sensitizers to combat antibiotic resistant gram-negative bacteria. Bioorg Med Chem. 2013; 21(5):
1174
–1179. doi:
10.1016/j.bmc.2012.12.030
PMID:
23352753
18.
Bolla J-M, Brunel JM, Casanova JPF, Lorenzi V, Berti L. Preparation of polyaminoisoprenyl derivatives
for use in medical and nonmedical antibiotic or antiseptic treatment. PCT Int Appl. 2012;
(WO2012113891A1):51pp.
19.
Lieutaud A, Guinoiseau E, Lorenzi V, Guiliani M, Lome V, Brunel J, et al. Inhibitors of antibiotic efflux by
AcrAB-TolC in Enterobacter aerogenes. Anti-Infective Agents. 2013; 11(2): 168
–178.
20.
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome
sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature; 2000; 406(6799):
959
–64. PMID:
10984043
Inhibitors of Antibiotic Resistance in Pseudomonas
PLOS ONE | DOI:10.1371/journal.pone.0154490
May 6, 2016
15 / 16
21.
Dumas J-L, van Delden C, Perron K, Köhler T. Analysis of antibiotic resistance gene expression in
Pseudomonas aeruginosa
by quantitative real-time-PCR. FEMS Microbiol Lett. 2006; 254(2): 217
–25.
PMID:
16445748
22.
Hamzehpour MM, Pechere J-C, Plésiat P, Köhler T. OprK and OprM define two genetically distinct mul-
tidrug efflux systems in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995; 39(11):
2392
–6. PMID:
8585714
23.
Köhler T, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechere JC. Characterization of
MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol
Microbiol. 1997; 23(2): 345
–54. PMID:
9044268
24.
Muller C, Plésiat P, Jeannot K. A two-component regulatory system interconnects resistance to poly-
myxins, aminoglycosides, fluoroquinolones, and
β-lactams in Pseudomonas aeruginosa. Antimicrob
Agents Chemother. 2011; 55(3): 1211
–21. doi:
10.1128/AAC.01252-10
PMID:
21149619
25.
Vettoretti L, Plésiat P, Muller C, Garch El F, Phan G, Attrée I, et al. Efflux unbalance in Pseudomonas
aeruginosa
isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 2009; 53(5): 1987
–97.
doi:
10.1128/AAC.01024-08
PMID:
19258280
26.
Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Che-
mother. 2003; 52(1): 1. PMID:
12805255
27.
Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including gly-
cylcyclines. J Antimicrob Chemother. 2006; 58(2): 256
–65. PMID:
16816396
28.
Taber HW, Mueller JP, Miller PF, Arrow AS. Bacterial uptake of aminoglycoside antibiotics. Microbiol
Rev. 1987; 51(4): 439
–57. PMID:
3325794
29.
Renau TE, Léger R, Filonova L, Flamme EM, Wang M, Yen R, et al. Conformationally-restricted ana-
logues of efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa.
Bioorganic & Medicinal Chemistry Letters. 2003; 13(16): 2755
–8.
30.
Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, et al. Identification and characteriza-
tion of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for
combination therapy. Antimicrob Agents Chemother. 2001; 45(1): 105
–16. PMID:
11120952
31.
Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011; 2: 65. doi:
10.3389/
fmicb.2011.00065
PMID:
21747788
32.
Iino R, Nishino K, Noji H, Yamaguchi A, Matsumoto Y. A Microfluidic Device for Simple and Rapid Eval-
uation of Multidrug Efflux Pump Inhibitors. Front Microbiol. 2012; 3. doi:
10.3389/fmicb.2012.00040
33.
Lamers RP, Cavallari JF, Burrows LL. The efflux inhibitor phenylalanine-arginine beta-naphthylamide
(PA
βN) permeabilizes the outer membrane of gram-negative bacteria. PLoS ONE. 2012; 8(3):
e60666
–6.
34.
Kwon DH, Lu CD. Polyamines Increase Antibiotic Susceptibility in Pseudomonas aeruginosa. Antimi-
crob Agents Chemother. 2006; 50(5): 1623
–7. PMID:
16641427
35.
Verch
ère A, Broutin I, Picard M. Photo-induced proton gradients for the in vitro investigation of bacterial
efflux pumps. Sci Rep. 2012; 2. doi:
10.1038/srep00306
36.
Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, Tyers M, et al. Combinations of antibiotics
and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol. 2011; 7(6): 348
–50. doi:
10.
1038/nchembio.559
PMID:
21516114
37.
Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. A systematic review and meta-analysis
of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis. 2014; 14: 13. doi:
10.
1186/1471-2334-14-13
PMID:
24405683
38.
Nitzan O, Suponitzky U, Kennes Y, Chazan B, Raul R, Colodner R. Is chloramphenicol Making a come-
back? Isr Med Assoc J. 2010; 12(6): 371
–4. PMID:
20928993
39.
Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline in 2013. J Antibiot. 2013; 66
(10): 571
–91. doi:
10.1038/ja.2013.86
PMID:
24002361
Inhibitors of Antibiotic Resistance in Pseudomonas
PLOS ONE | DOI:10.1371/journal.pone.0154490
May 6, 2016
16 / 16
Dostları ilə paylaş: |