Studies on the biology of Deanolis sublimbalis Snellen (Lepidoptera, Pyralidae) and its natural enemies on mango in Papua New Guinea



Yüklə 58.39 Kb.
PDF просмотр
tarix21.08.2017
ölçüsü58.39 Kb.

M

ITT


.

 

D



TSCH

.

 



G

ES

.



 ALLG

.

 ANGEW



.

 

E



NT

.

 



15 G

IESSEN 


2006 

 

 



273

Studies on the biology of Deanolis sublimbalis Snellen (Lepidoptera, Pyralidae)  

and its natural enemies on mango in Papua New Guinea 

 

 



Stefan Krull & Thies Basedow 

 

National Agricultural Research Institute, Port Moresby, Papua New Guinea, and University of Gießen, 



Germany, Institute of Phytopathology and Applied Zoology, Experimental Station 

 

Abstract:  Untersuchungen zur Biologie und den natürlichen Feinden von  Deanolis sublimbalis 

S

NELLEN



 (Lepidoptera, Pyralidae) an Mango in Papua New Guinea. 

An vier Standorten in der Central Province von Papua Neuguinea wurde D. sublimbalis untersucht. 

Eier wurden fast immer am Fruchtstiel unter vertrockneten Blütenblättern abgelegt, meist zu 2-4. 

Eiablage auf die Früchte war sehr selten. Larven wurden in den Früchten von Mangifera indica, M. 



minor und M. odorata gefunden, nie an den anderen Anacardiaceen Spondias spp. und Anacardium 

occidentale oder den Myrtaceen Syzygium spp. Im Labor entwickelten sich in Früchten von A. 

occidentale (Cashew-Baum) nur 5 % der Larven zur Imago. Präpuppen und Puppen wurden nur 

unter der Rinde der Mangobäume gefunden oder in tiefen Rissen der Rinde. Parasitoide oder 

Pathogene der Eier oder Larven wurden nicht festgestellt. Die Prädatoren, wie die Weberameise 

Oecophylla smaragdina (F.), spielten bei D. sublimbalis keine Rolle. 

 

Key words: Mango, PNG, Deanolis sublimbalis, Eiablage, Diapause, Wirtspflanzen, natürliche 

Feinde 

 

Prof. Dr. Th. Basedow, JLU, Institut für Phytopathologie und Angewandte Zoologie, Versuchs-



station, Alter Steinbacher Weg 44, D-35394 Giessen, E-Mail: Thies.Basedow@agrar-uni-giessen-de  

 

Deanolis sublimbalis S

NELLEN

 (Lepidoptera: Pyralidae), the red banded mango caterpillar (RMBC), is a 



Southeast Asian insect species. It is now widely distributed throughout this region (India, Burma, Thailand, 

China, Brunei, Philippines, Indonesia, and Papua New Guinea) and was recently detected for the first time on 

mainland Australia, but so far has not been recorded in Pakistan, Nepal, and Malaysia (W

ATERHOUSE

 1998). 

In Papua New Guinea (PNG) it is nowadays widely distributed throughout the mainland and islands 

(W

ATERHOUSE



 1998). Although infestation levels of 40 – 50 % were recorded in the Philippines (T

IPON


 

1979), very little is known about the biology of this pest, and there are only few references in the literature, 

the results differing significantly (W

ATERHOUSE

 1998). Due to the contradictory opinions on the biology 

published, the following study was undertaken to obtain the basic information required for the development 

of an appropriate management technique for this pest. In particular, the fundamental data to clarify in the 

course of this study were: 1. life history and behaviour of RMBC, especially when mango is out of season. 2. 

search for other host plants of RMBC3. search for natural enemies of RMBC. 

 

Material and methods 

The Central Province of Papua New Guinea (PNG), has an average annual rainfall of 1,000 to 1,200 mm. 

The rainy season starts usually by the end of November and lasts until April. The flowering of mango starts 

in July, and fruits are harvested from October through until the mid of December. Field studies took place at 

four orchards in the coastal lowland zone of the Central Province, 25 to 120 km away from Pt. Moresby 

(Launakalana, Laloki, Tahira and a mango plantation of the Pacific Adventist University, PAU). The main 

mango variety grown in all areas was 'Kensington Pride', and no insecticides were used in the plantations 

during and before the study period, i.e. 2000 to early 2003. Studies in the laboratory were conducted at Port 

Moresby.  



Oviposition.  Fruits, leaves and twigs were regularly checked for oviposition sites and number of eggs 

laid during the 2001 season at Laloki, PAU and Tahira.  



M

ITT


.

 

D



TSCH

.

 



G

ES

.



 ALLG

.

 ANGEW



.

 

E



NT

.

 



15 G

IESSEN 


2006 

 

 



274 

Pupation sites.  The upper layer of soil (5 cm) and the litter under two randomly chosen heavily infested 

trees at Tahira and one at Laloki were checked on a monthly basis from October to December 2001 during 

mango fruiting for the presence of pre-pupae and pupae of RMBC. At each sampling time, ten m

2

 around 



each tree were randomly chosen by placing a frame (1 x 1 m) on the ground. The covered area was then 

searched for pupae of Lepidoptera. No pupae were found.  



Emergence. Fruits both on the tree or fallen to the ground were visually inspected for the presence of 

boreholes. Those with boreholes were examined for the presence of lepidopteran pupae. If found, pupae were 

taken into the laboratory to allow emergence of adults. Sampling was done during the 2001 mango season at 

Laloki, PAU and Tahira. Trees: During the 2002 mango season the bark on the trunk and branches of infested 

trees at Tahira and Laloki were regularly checked for the presence of pre-pupae and pupae of RMBC. The 

pupal stages were collected and taken into the laboratory where they were treated to allow emergence of 

adults.  

Behaviour during mango off-season. To study the behaviour during the period when there is no mango 

fruit on the trees, the bark on the trunk of infested trees at Tahira and Laloki were examined towards the end 

of the 2002 mango season for the presence of pre-pupae and pupae of RMBC. In total 100 pupation sites 

were located and marked, and again visited during off-season in March 2003 to check the cocoons for 

emergence holes of adult moths. In addition, 100 prepupae and pupae were collected towards the end of the 

mango season 2002 and taken into the laboratory where they were placed on a layer of sawdust in plastic 

vials (3.5 x 10cm) closed with insect gauze to determine emergence of adults during off-season.  

Host plants. Fruits of the following trees growing around Pt. Moresby were regularly monitored for 

boreholes and the presence of RBMC larvae during their fruiting seasons: Spondias spp. (umbrella apple, 

yellow and purple mombins) (Anacardiaceae), Anacardium occidentale L. (cashew) (Anacardiaceae), and 

Syzygium spp. (water apples, like S. carolinense) (Myrtaceae). In addition, trees of Mangifera minor and M. 

odorata were visited to confirm earlier findings that these species are hosts for RBMC (W

ATERHOUSE

 1998). 

To determine the suitability of the fruits Anacardium occidentale and Syzygium spp. as alternative hosts for 

RMBC, field collected 1

st

- and 2



nd

 instars of RBMC (100 per plant) were placed into boxes (12 x 6 cm) (5 

larvae in each box) and provided with fruits of the test plants to allow emergence of adults.  

Natural enemies of RMBC.    

Parasitoids: To identify larval/pupal parasitoids of RBMC, larvae were collected in the field and kept singly 

in transparent plastic vials closed with insect gauze (10 x 3.5 cm) in the laboratory at an average temperature 

of 24

o

 C and 60 – 70 % relative humidity, to observe emergence of parasitoids. RBMC-eggs were collected 



in the field and singly kept in the laboratory (24

o

 C, 60 – 70 % RH) in glass vials (1 x 5cm) until emergence 



of the larvae, to test for egg-parasitoids.  

 

Pathogens:  To identify bacteria, fungi or viruses attacking RBMC, field collected larvae were kept in the 

laboratory using the same method as described for larval/pupal parasitoids and regularly checked for typical 

signs of viruses and bacteria attacks or the presence of fungal spores/mycelium.  

 

Predators: Predators were collected using the beating method and pitfall traps at Launakalana and PAU. In 

addition, visual observations were made when visiting the study sites. The detailed results are presented and 

discussed in K

RULL 


&

 

B



ASEDOW

 (in prep.). 

 

Results 

Oviposition. In total, 156 egg laying sites were found and their location on the trees and the number of 

eggs were recorded. The eggs were laid in small crevices (preferably dried anthraknose spots) on the 

peduncle, on non fruiting vegetative branches close to the fruit, or on the fruit itself. Marble sized fruit were 

preferred sites for oviposition, while only a few eggs were recorded on mature fruits. No eggs were recorded 

on the leaves. As Table 1 shows the majority of the eggs (69.9 %) were laid at the peduncle at the base of the 

fruit under dried sepals. Uncovered eggs laid at the same spot accounted for 17.9 %, while only a few were 

found at the other spots. Eggs were preferably laid in groups of two, although single egg-laying and bigger 

egg masses (up to 14 eggs) were also recorded. RBMC larvae usually enter the fruit through one borehole, 

which is typically made into the lower half of the fruit. Boreholes close to the peduncle are not caused by 

RBMC but by another caterpillar, probably Cryptoblabes sp. (Lep., Pyralidae). 



Pupation sites. Pre-pupae and pupae of RMBC were found in the bark on the trunks of every RBMC 

infested tree examined at both locations studied. To pupate, the larvae bore deep into the bark (1-2 cm) and 



M

ITT


.

 

D



TSCH

.

 



G

ES

.



 ALLG

.

 ANGEW



.

 

E



NT

.

 



15 G

IESSEN 


2006 

 

 



275

close the entrance hole with chewed bark particles, which left them completely invisible. Other pupation sites 

were deep crevices in the bark. The identification was simple, since many of them were found in the pre-

pupal stage, during which the larvae turn bluish. No pre-pupae or pupae of RMBC or of any other 

lepidopteran species were found in the surface layer of soil, litter or in the fruit, at either location. 

Behaviour during mango off-season. When the pupation sites were visited again in March 2003, no 

holes in the cocoons were visible. This indicates that none of the pupae had emerged as adult moths. Out of 

the 100 pupae taken into laboratory, no adult moth emerged during the off-season of mango. 

 

Table 1: Oviposition sites of Deanolis sublimbalis on mango 



 

Oviposition Site 

No. of egg masses 

recorded 

Base of peduncle covered with 



dried sepals 

109   


69.78 

Base of peduncle (uncovered) 

29 

18.59 


Peduncle 

  9 


  5.77 

Non-fruiting vegetative branch 

  6 

  3.85 


Fruit 

  3 


  1.92 

Total 


156   

100  


 

Determination of host plants other than Mangifera 

Field search. No larvae of RMBC were found in the fruits of Spondias spp., Anacardium occidentale and 

Syzygium spp. Fruits of the species Mangifera minor and M. odorata were found to be attacked by RBMC. 

Laboratory trials (feeding study). All larvae fed with fruits of Syzygium spp. (water apples) did not 

complete metamorphosis and died within the larval stage. Five out of hundred larvae supplied with cashew as 

a diet completed the larval stage and pupated, while all larvae survived on the Mango species tested. 

Natural enemies of D. sublimbalis in PNG.  

 

Parasitoids. In total 1355 larvae and 923 eggs were collected and no parasitoids emerged from these.  

 

Pathogens.  In total 547 larvae were collected in the field and kept in the laboratory to be observed for 

possible attack by pathogens. No signs of microbial infections were recorded in the larvae.  



 

Predators.  The most abundant predator on the trees was the weaver ant Oecophylla smaragdina (F.) 

(average 0.5 to 0.8 per m²), but it was not found feeding on eggs or larvae of RMBC. Also Coccinellidae 

were not observed feeding on RBMC-eggs (K

RULL 


&

 

B



ASEDOW

, in prep.). 

 

Discussion 

Concerning oviposition the findings of F

ENNER 

(1987)


 

and


 

G

OLEZ 



(1991) have been confirmed. Our 

observation that marble sized fruits are preferred sites for oviposition has to be related to the fact that RMBC 

synchronises with its host plant. In contrast to reports by S

ENGUPTA 


&

 

B



EHURA

 (1957) in India, and G

OLEZ

 

(1991) in the Philippines, in our study the pupation sites turned out to be exclusively in the bark of mango 



tree trunks. These observations are supported by the recent results of S

UJATHA 


&

 

Z



AHERUDDEEN

 (2002) from 

India. Since RMBC is monophagous on mango, as our study shows, it is safe to assume that the end of the 

diapause, when pupating in the bark, is initiated by physiological changes within the mango tree itself. Like 

G

OLEZ


 (1991), who did not record any larval parasitoids in the Philippines, we did not find any parasitoids. 

The only record comes from PNG, where one single Carcelia sp. (Tachinidae) was reared (W

ATERHOUSE 

1998). In the control of RBMC and fruit borers in general, larvae bore into the fruit immediately after 

hatching, and in this concealed habitat they are less susceptible to parasitization. Since no egg parasitoids 

were recorded in this study, it can be stated that parasitization of eggs is seldom and if, only at random. The 

low incidence can be related to the following reasons: The oviposition site under dried sepals might not have 

been located by hymenopteran parasitoids, or the parasitoids might not have identified the eggs as potential 

hosts. Furthermore, RMBC is an introduced species in PNG and no endemic parasitoids may have 

established themselves yet on this pest. The ineffectiveness of the weaver ant Oecophylla smaragdina, the 

most frequent predator, can be related to a different activity period. According to H

ÖLLDOBLER 

&

 

W



ILSON

 


M

ITT


.

 

D



TSCH

.

 



G

ES

.



 ALLG

.

 ANGEW



.

 

E



NT

.

 



15 G

IESSEN 


2006 

 

 



276 

(1990)  O. smaragdina is mostly diurnal while RMBC movement is probably nocturnal, as no larval 

movements were observed during the day.  

 

Acknowledgements 

Special thanks are due to the Australian Quarantine and Inspection Services (AQIS) for financial support. We 

are also grateful to the National Agricultural Research Institute (NARI) of PNG. 

 

References 

F

ENNER


, T.L. (1987). Red banded mango caterpillar. – Plant Quarantine Leaflet No. 51. Commonwealth 

Department of Primary Industry, Canberra: 4 pp. 

G

OLEZ


, H.G. (1991). Bionomics and control of the mango seed borer, Noorda albizonalis  H

AMPSON


 

(Pyralidae, Lepidoptera). – Acta Horticulturae 291: 418-424. 

H

ÖLLDOBLER



,

 

B.



 

&

 



W

ILSON


,

 

E.O. (1990): The Ants. – Berlin etc. (Springer). 



S

ENGUPTA


,

 

G.C.



 

&

 



B

EHURA


, B.K. (1957). Annotated list of crop pests in the State of Orissa. – Memoirs of 

the Entomological Society of India No. 5: 44 pp. 

S

UJATHA


,

 

A.



 

&

 



Z

AHERUDDEEN

, S.M. (2002). Biology of pyralid fruit borer, Deanolis albizonalis H

AMPSON


A new pest of mango. – Journal of Applied Zoological Research 13: 1-5. 

T

IPON


, H.T. (1979): Seed borer in mango. – Paper presented at the 2nd National Fruit Crop Symposium. 

December 12-14, 1979, Cebu City, Philippines. 

W

ATERHOUSE



, D.F. (1998): Biological Control of Insect Pests: Southeast Asian Prospects. – ACIAR 

Monograph No. 51: 548 pp. 



 


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2016
rəhbərliyinə müraciət

    Ana səhifə