Ternary search


int mid1 = l + (r - l) / 3; int



Yüklə 82,87 Kb.
səhifə2/2
tarix11.10.2023
ölçüsü82,87 Kb.
#153776
1   2
Ahmadjonova Zarnigora

int mid1 = l + (r - l) / 3;
int mid2 = r - (r - l) / 3;

// Check if key is present at any mid


if (ar[mid1] == key) {
return mid1;
}
if (ar[mid2] == key) {
return mid2;
}

// Since key is not present at mid,


// check in which region it is present
// then repeat the Search operation
// in that region

if (key < ar[mid1]) {

// The key lies in between l and mid1


return ternarySearch(l, mid1 - 1, key, ar);
}
else if (key > ar[mid2]) {

// The key lies in between mid2 and r


return ternarySearch(mid2 + 1, r, key, ar);
}
else {

// The key lies in between mid1 and mid2


return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
}
}

// Key not found


return -1;
}

// Driver code


public static void Main()
{
int l, r, p, key;

// Get the array


// Sort the array if not sorted
int[] ar = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// Starting index


l = 0;

// length of array


r = 9;

// Checking for 5

// Key to be searched in the array
key = 5;

// Search the key using ternarySearch


p = ternarySearch(l, r, key, ar);

// Print the result


Console.WriteLine("Index of " + key + " is " + p);

// Checking for 50

// Key to be searched in the array
key = 50;

// Search the key using ternarySearch


p = ternarySearch(l, r, key, ar);

// Print the result


Console.WriteLine("Index of " + key + " is " + p);
Console.ReadKey(true);
}
}
Chiqarish:

5 indeksi 4 ga teng
50 indeksi -1

Python3dagi kodi:
# Python3 program to illustrate
# recursive approach to ternary search
import math as mt

# Function to perform Ternary Search
def ternarySearch(l, r, key, ar):

if (r >= l):

# Find the mid1 and mid2
mid1 = l + (r - l) //3
mid2 = r - (r - l) //3

# Check if key is present at any mid
if (ar[mid1] == key):
return mid1

if (ar[mid2] == key):
return mid2

# Since key is not present at mid,
# check in which region it is present
# then repeat the Search operation
# in that region
if (key < ar[mid1]):

# The key lies in between l and mid1
return ternarySearch(l, mid1 - 1, key, ar)

elif (key > ar[mid2]):

# The key lies in between mid2 and r
return ternarySearch(mid2 + 1, r, key, ar)

else:

# The key lies in between mid1 and mid2
return ternarySearch(mid1 + 1,
mid2 - 1, key, ar)

# Key not found
return -1

# Driver code
l, r, p = 0, 9, 5

# Get the array
# Sort the array if not sorted
ar = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

# Starting index
l = 0

# length of array
r = 9

# Checking for 5

# Key to be searched in the array
key = 5

# Search the key using ternarySearch
p = ternarySearch(l, r, key, ar)

# Print the result
print("Index of", key, "is", p)

# Checking for 50

# Key to be searched in the array
key = 50

# Search the key using ternarySearch
p = ternarySearch(l, r, key, ar)

# Print the result
print("Index of", key, "is", p)

C++ dagi kodi:
// C++ program to illustrate
// recursive approach to ternary search
#include
using namespace std;

// Function to perform Ternary Search
int ternarySearch(int l, int r, int key, int ar[])
{
if (r >= l) {

// Find the mid1 and mid2
int mid1 = l + (r - l) / 3;
int mid2 = r - (r - l) / 3;

// Check if key is present at any mid
if (ar[mid1] == key) {
return mid1;
}
if (ar[mid2] == key) {
return mid2;
}

// Since key is not present at mid,
// check in which region it is present
// then repeat the Search operation
// in that region
if (key < ar[mid1]) {

// The key lies in between l and mid1
return ternarySearch(l, mid1 - 1, key, ar);
}
else if (key > ar[mid2]) {

// The key lies in between mid2 and r
return ternarySearch(mid2 + 1, r, key, ar);
}
else {

// The key lies in between mid1 and mid2
return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
}
}

// Key not found
return -1;
}

// Driver code
int main()
{
int l, r, p, key;

// Get the array
// Sort the array if not sorted
int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// Starting index
l = 0;

// length of array
r = 9;

// Checking for 5

// Key to be searched in the array
key = 5;

// Search the key using ternarySearch
p = ternarySearch(l, r, key, ar);

// Print the result
cout << "Index of " << key
<< " is " << p << endl;

// Checking for 50

// Key to be searched in the array
key = 50;

// Search the key using ternarySearch
p = ternarySearch(l, r, key, ar);

// Print the result
cout << "Index of " << key
<< " is " << p << endl;
}

Iterative Approach of Ternary Search (Iterativ uchlik qidiruv usuli):
using System;

public class GFG {

// Function to perform Ternary Search


static int ternarySearch(int l, int r,
int key, int[] ar)

{
while (r >= l) {

// Find the mid1 and mid2
int mid1 = l + (r - l) / 3;
int mid2 = r - (r - l) / 3;

// Check if key is present at any mid


if (ar[mid1] == key) {
return mid1;
}
if (ar[mid2] == key) {
return mid2;
}

// Since key is not present at mid,


// check in which region it is present
// then repeat the Search operation
// in that region

if (key < ar[mid1]) {

// The key lies in between l and mid1


r = mid1 - 1;
}
else if (key > ar[mid2]) {

// The key lies in between mid2 and r


l = mid2 + 1;
}
else {

// The key lies in between mid1 and mid2


l = mid1 + 1;
r = mid2 - 1;
}
}

// Key not found


return -1;
}

// Driver code


public static void Main(String[] args)
{
int l, r, p, key;

// Get the array


// Sort the array if not sorted
int[] ar = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// Starting index


l = 0;

// length of array


r = 9;

// Checking for 5

// Key to be searched in the array
key = 5;

// Search the key using ternarySearch


p = ternarySearch(l, r, key, ar);

// Print the result


Console.WriteLine("Index of " + key + " is " + p);

// Checking for 50

// Key to be searched in the array
key = 50;

// Search the key using ternarySearch


p = ternarySearch(l, r, key, ar);

// Print the result


Console.WriteLine("Index of " + key + " is " + p);
Console.ReadKey();
}
}

5 indeksi 4 ga teng
50 indeksi -1
Python3 dagi kodi:
# Function to perform Ternary Search
def ternarySearch(l, r, key, ar):
while r >= l:

# Find mid1 and mid2
mid1 = l + (r-l) // 3
mid2 = r - (r-l) // 3

# Check if key is at any mid


if key == ar[mid1]:
return mid1
if key == mid2:
return mid2

# Since key is not present at mid,


# Check in which region it is present
# Then repeat the search operation in that region
if key < ar[mid1]:
# key lies between l and mid1
r = mid1 - 1
elif key > ar[mid2]:
# key lies between mid2 and r
l = mid2 + 1
else:
# key lies between mid1 and mid2
l = mid1 + 1
r = mid2 - 1

# key not found


return -1

# Driver code

# Get the list
# Sort the list if not sorted
ar = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

# Starting index


l = 0

# Length of list


r = 9

# Checking for 5


# Key to be searched in the list
key = 5

# Search the key using ternary search


p = ternarySearch(l, r, key, ar)

# Print the result


print("Index of", key, "is", p)

# Checking for 50


# Key to be searched in the list
key = 50

# Search the key using ternary search


p = ternarySearch(l, r, key, ar)

# Print the result


print("Index of", key, "is", p)
C++ dagi kodi:
// C++ program to illustrate
// iterative approach to ternary search

#include


using namespace std;

// Function to perform Ternary Search


int ternarySearch(int l, int r, int key, int ar[])

{
while (r >= l) {

// Find the mid1 and mid2
int mid1 = l + (r - l) / 3;
int mid2 = r - (r - l) / 3;

// Check if key is present at any mid


if (ar[mid1] == key) {
return mid1;
}
if (ar[mid2] == key) {
return mid2;
}

// Since key is not present at mid,


// check in which region it is present
// then repeat the Search operation
// in that region

if (key < ar[mid1]) {

// The key lies in between l and mid1
r = mid1 - 1;
}
else if (key > ar[mid2]) {

// The key lies in between mid2 and r


l = mid2 + 1;
}
else {

// The key lies in between mid1 and mid2


l = mid1 + 1;
r = mid2 - 1;
}
}

// Key not found


return -1;
}

// Driver code


int main()
{
int l, r, p, key;

// Get the array


// Sort the array if not sorted
int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// Starting index


l = 0;

// length of array


r = 9;

// Checking for 5

// Key to be searched in the array
key = 5;

// Search the key using ternarySearch


p = ternarySearch(l, r, key, ar);

// Print the result


cout << "Index of "<// Checking for 50

// Key to be searched in the array
key = 50;

// Search the key using ternarySearch


p = ternarySearch(l, r, key, ar);

// Print the result


cout << "Index of "<}
Yüklə 82,87 Kb.

Dostları ilə paylaş:
1   2




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin