Type of the Paper Article


Institutional Review Board Statement



Yüklə 331,48 Kb.
səhifə9/9
tarix30.08.2023
ölçüsü331,48 Kb.
#141125
1   2   3   4   5   6   7   8   9
Clinical event classification with FL (3)

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.
References

  1. Bote-Curiel, L.; Muñoz-Romero, S.; Gerrero-Curieses, A.; Rojo-Álvarez, J.L. Deep Learning and Big Data in Healthcare: A Double Review for Critical Beginners. Appl. Sci. 2019, 9, 2331. DOI: 10.3390/app9112331.

  2. Xia, Q.; Sifah, E.B.; Smahi, A.; Amofa, S.; Zhang, X. BBDS: Blockchain-Based Data Sharing for Electronic Medical Records in Cloud Environments. Inf. 2017, 8, 44. DOI: 10.3390/info8020044.

  3. Gallagher, D.; O'Halloran, P.; De Barra, M.; Davy, A.; Silke, B.; Ward, M.; McNicholas, B. Implementation and Continuous Monitoring of an Electronic Health Record Embedded Readmissions Clinical Decision Support Tool. J. Pers. Med. 2020, 10, E103. DOI: 10.3390/jpm10030103.

  4. Albahri, O.S.; Zaidan, A.A.; Zaidan, B.B.; Hashim, M.; Albahri, A.S.; Alsalem, M.A. Real-Time Remote Health-Monitoring Systems in a Medical Centre: A Review of the Provision of Healthcare Services-Based Body Sensor Information, Open Challenges and Methodological Aspects. J. Med. Syst. 2018, 42, 1-47. DOI: 10.1007/s10916-018-1006-6.

  5. Siddique, S.; Chow, J.C.L. Machine Learning in Healthcare Communication. Encycl. 2021, 1, 220-239. DOI: 10.3390/encyclopedia1010021.

  6. Song, C.; Zeng, X.; Nie, H.; Huang, S.; Hu, M.; Huang, F.; Liu, X. Spatial and Temporal Impacts of Socioeconomic and Environmental Factors on Healthcare Resources: A County-Level Bayesian Local Spatiotemporal Regression Modeling Study of Hospital Beds in Southwest China. Int. J. Environ. Res. Public Health 2020, 17, 5890. DOI: 10.3390/ijerph17165890.

  7. Wang, F.; Wang, Y.; Ji, X.; Wang, Z. Effective Macrosomia Prediction Using Random Forest Algorithm. Int. J. Environ. Res. Public Health 2022, 19, 3245. DOI: 10.3390/ijerph19063245.

  8. Abdullah, T.A.A.; Zahid, M.S.M.; Ali, W. A Review of Interpretable ML in Healthcare: Taxonomy, Applications, Challenges, and Future Directions. Symmetry 2021, 13, 2439. DOI: 10.3390/sym13122439.

  9. Mazo, C.; Kearns, C.; Mooney, C.; Gallagher, W.M. Clinical Decision Support Systems in Breast Cancer: A Systematic Review. Cancer 2020, 12, 369. DOI: 10.3390/cancers12020369.

  10. Sallam, M.; Almaghaslah, D.; Alsaddik, A.; Alam, S.; Almaghaslah, E.; Al-Mendalawi, M.D. Assessing Healthcare Workers’ Knowledge and Their Confidence in the Diagnosis and Management of Human Monkeypox: A Cross-Sectional Study in a Middle Eastern Country. Healthcare 2022, 10, 1722. DOI: 10.3390/healthcare10091722.

  11. Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E.; Jung, J. Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Health Care. Nanomaterials 2019, 9, 813. DOI: 10.3390/nano9060813

  12. Li, L.; Fan, Y.; Tse, M.; Lin, K.Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. DOI: 10.1016/j.cie.2020.106854

  13. Xu, J.; Glicksberg, B.S.; Su, C.; Walker, P.; Bian, J.; Wang, F. Federated Learning for Healthcare Informatics. J. Healthcare Inform. Res. 2021, 5, 1-9.

  14. Brisimi, T.S.; Chen, R.; Mela, T.; Olshevsky, A.; Paschalidis, I.C.; Shi, W. Federated learning of predictive models from federated electronic health records. Int. J. Med. Inform. 2018, 112, 59-67.

  15. Antunes, R.S., André da Costa, C., Küderle, A., Yari, I.A., Eskofier, B. Federated learning for healthcare: Systematic review and architecture proposal. ACM Trans. Intell. Syst. Technol. (TIST) 2022, 13(4), 1-23.

  16. Choudhury, O.; Gkoulalas-Divanis, A.; Salonidis, T.; Sylla, I.; Park, Y.; Hsu, G.; Das, A. Anonymizing data for privacy-preserving federated learning. arXiv preprint arXiv:2002.09096. 2020, Feb 21.

  17. Pati, S.; Baid, U.; Edwards, B.; Sheller, M.; Wang, S.H.; Reina, G.A.; Foley, P.; Gruzdev, A.; Karkada, D.; Davatzikos, C.; Sako, C. Federated learning enables big data for rare cancer boundary detection. Nat. Commun. 2022, 13, 7346. DOI: 10.1038/s41467-022-33407-5.

  18. Sannara, E.K.; Portet, F.; Lalanda, P.; German, V.E. A federated learning aggregation algorithm for pervasive computing: Evaluation and comparison. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications (PerCom), IEEE, 2021, 1-10.

  19. Awad, F.H.; Hamad, M.M.; Alzubaidi, L. Robust Classification and Detection of Big Medical Data Using Advanced Parallel K-Means Clustering, YOLOv4, and Logistic Regression. Life 2023, 13, 691. https://doi.org/10.3390/life13030691

  20. Kumar, S., and Singh, M. "Big data analytics for healthcare industry: impact, applications, and tools." Big Data Min. Analyt. 2018, vol. 2, no. 1, pp. 48-57. DOI: 10.26599/BDMA.2018.9020031.

  21. Dolley, S. "Big Data Solution to Harnessing Unstructured Data in Healthcare." IBM Report, 2015.

  22. Han, T.T.; Pham, H.Y.; Nguyen, D.S.; Iwata, Y.; Do, T.T.; Ishibashi, K.; Sun, G. Machine learning based classification model for screening of infected patients using vital signs. Informatics in Medicine Unlocked 2021, 24, 100592. DOI: 10.1016/j.imu.2021.100592.

  23. Beunza Nuin, J.J.; Puertas Sanz, E.; García Ovejero, E.; Villalba, G.; Condés Moreno, E.; Koleva, G.; Hurtado, C.; Landecho, M. Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease). J. Biomed. Inform. 2019, 97, 103257. DOI: 10.1016/j.jbi.2019.103257.

  24. Pan, Y., Fu, M., Cheng, B., Tao, X., and Guo, J. "Enhanced deep learning assisted convolutional neural network for heart disease prediction on the Internet of medical things platform." IEEE Access, 2020, vol. 8, pp. 189503-189512. DOI: 10.1109/ACCESS.2020.3026214.

  25. Shaik, T.; Tao, X.; Higgins, N.; Gururajan, R.; Li, Y.; Zhou, X.; Acharya, U.R. FedStack: Personalized activity monitoring using stacked federated learning. Knowl. -Based Syst. 2022, 257, 109929. DOI: 10.1016/j.knosys.2022.109929.

  26. Dayan, I.; Roth, H.R.; Zhong, A.; Harouni, A.; Gentili, A.; Abidin, A.Z.; Liu, A.; Costa, A.B.; Wood, B.J.; Tsai, C.S.; Wang, C.H. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat. Med. 2021, 27, 1735-1743.

  27. Budrionis, A.; Miara, M.; Miara, P.; Wilk, S.; Bellika, J.G. Benchmarking PySyft federated learning framework on MIMIC-III dataset. IEEE Access 2021, 9, 116869-116878. DOI: 10.1109/ACCESS.2021.3105929.

  28. Johnson, A.E.W.; Bulgarelli, L.; Shen, L.; Gayles, A.; Shammout, A.; Horng, S.; Pollard, T.J.; Moody, B.; Gow, B.; Lehman, L.W.; Celi, L.A. MIMIC-IV, a freely accessible electronic health record dataset. Sci. Data 2023, 10, 1. DOI: 10.1038/s41597-022-01899-x.

  29. Forkan, A. R. M. and Khalil, I. "PEACE-Home: probabilistic estimation of abnormal clinical events using vital sign correlations for reliable home-based monitoring." Pervasive Mob. Comp., 2017, vol. 38, pp. 296-311. DOI: 10.1016/j.pmcj.2016.12.009.

  30. Hauschild, A.C.; Lemanczyk, M.; Matschinske, J.; Frisch, T.; Zolotareva, O.; Holzinger, A.; Baumbach, J.; Heider, D. Federated Random Forests can improve local performance of predictive models for various healthcare applications. Bioinformatics 2022, 38, 2278-2286.DOI: 10.1093/bioinformatics/btac065.

  31. Lu, H.; Uddin, S.; Hajati, F.; Moni, M.A.; Khushi, M. A patient network-based machine learning model for disease prediction: The case of type 2 diabetes mellitus. Appl. Intell. 2022, 52, 2411-2422. DOI: 10.1007/s10489-021-02533-w.

  32. Tabosa de Oliveira, T.; da Silva Neto, S.R.; Teixeira, I.V.; Aguiar de Oliveira, S.B.; de Almeida Rodrigues, M.G.; Sampaio, V.S.; Endo, P.T. A Comparative Study of Machine Learning Techniques for Multi-Class Classification of Arboviral Diseases. Front. Trop. Dis., 2022, vol. 2, no. 71. DOI: 10.3389/fitd.2021.769968.

  33. Clifton, L.; Clifton, D.A.; Watkinson, P.J.; Tarassenko, L. Identification of Patient Deterioration in Vital-Sign Data Using One-Class Support Vector Machines. In Proceedings of the 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), 18 September 2011; pp. 125-131

  34. Rocha, T.; Paredes, S.; Carvalho, P.; Henriques, J.; Harris, M. Wavelet Based Time Series Forecast with Application to Acute Hypotensive Episodes Prediction. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 31 August 2010; pp. 2403-2406.

  35. Cao, H.; Eshelman, L.; Chbat, N.; Nielsen, L.; Gross, B.; Saeed, M. Predicting ICU Hemodynamic Instability Using Continuous Multiparameter Trends. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 20 August 2008; pp. 3803-3806.

  36. Netrapalli, P. Stochastic gradient descent and its variants in machine learning. J. Indian Inst. Sci. 2019, 99, 201-213.

  37. Bi, Z.J.; Han, Y.Q.; Huang, C.Q.; Wang, M. Gaussian naive Bayesian data classification model based on clustering algorithm. In Proceedings of the 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019); Atlantis Press: 2019 Jul; pp. 396-400.

  38. Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Fernandez-Marques, J.; et al. Flower: A Friendly Federated Learning Framework. 2022, HAL Id: hal-03601230.

  39. Li, X.; Huang, K.; Yang, W.; Wang, S.; Zhang, Z. On the Convergence of FedAvg on Non-IID Data. arXiv preprint, 2019. Available online: https://arxiv.org/abs/1907.02189 (accessed on 4 July 2019).




Multimodal Technol. Interact. 2023, 7, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/mti

Yüklə 331,48 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin