Cermax xenon arc lamp with synthetic sapphire output window
Optically transparent materials focus on the response of a material to incoming light waves of a range of wavelengths. Frequency selective optical filters can be utilized to alter or enhance the brightness and contrast of a digital image. Guided lightwave transmission via frequency selective waveguides involves the emerging field of fiber optics and the ability of certain glassy compositions as a transmission medium for a range of frequencies simultaneously (multi-mode optical fiber) with little or no interference between competing wavelengths or frequencies. This resonantmode of energy and data transmission via electromagnetic (light) wave propagation, though low powered, is virtually lossless. Optical waveguides are used as components in Integrated optical circuits (e.g. light-emitting diodes, LEDs) or as the transmission medium in local and long haul optical communication systems. Also of value to the emerging materials scientist is the sensitivity of materials to radiation in the thermal infrared (IR) portion of the electromagnetic spectrum. This heat-seeking ability is responsible for such diverse optical phenomena as night-vision and IR luminescence.
Thus, there is an increasing need in the military sector for high-strength, robust materials which have the capability to transmitlight (electromagnetic waves) in the visible (0.4 – 0.7 micrometers) and mid-infrared (1 – 5 micrometers) regions of the spectrum. These materials are needed for applications requiring transparent armor, including next-generation high-speed missiles and pods, as well as protection against improvised explosive devices (IED).
In the 1960s, scientists at General Electric (GE) discovered that under the right manufacturing conditions, some ceramics, especially aluminium oxide (alumina), could be made translucent. These translucent materials were transparent enough to be used for containing the electrical plasma generated in high-pressuresodium street lamps. During the past two decades, additional types of transparent ceramics have been developed for applications such as nose cones for heat-seekingmissiles, windows for fighter aircraft, and scintillation counters for computed tomography scanners. Other ceramic materials, generally requiring greater purity in their make-up than those above, include forms of several chemical compounds, including:
Barium titanate: (often mixed with strontium titanate) displays ferroelectricity, meaning that its mechanical, electrical, and thermal responses are c