Vektor maydonidagi ikkinchi tartibli amallar


Potensial maydon. Potensiallik shartlari



Yüklə 0,86 Mb.
səhifə4/5
tarix15.04.2023
ölçüsü0,86 Mb.
#98658
1   2   3   4   5
Vektor maydonidagi ikkinchi tartibli amallar

Potensial maydon. Potensiallik shartlari.
Ta’rif. Agar

vektor maydonning uyurmasi sohaning hamma nuqtalarida nolga teng bo‘lsa, bu maydon shu sohada potensial (yoki gradientli, uyurmasiz) maydon deyiladi.
Potensial maydonning ta’rifiga ko‘ra maydonning har bir nuqtasi uchun

bo‘ladi, ya’ni quyidagi ayniyatlar o‘rinli bo‘ladi:

Shuning uchun (75) ayniyatlarning bajarilishi vektor maydonning potensialligi sharti bo‘ladi.
Ta’rif. Gradienti skalyar maydonni vujudga keltiruvchi skalyar funksiya shu vektor maydonning potensial funksiyasi (yoki potensiali) deyiladi.
Shunday qilib, potensial maydon

munosabat bilan ifodalanadi, bunda

bo‘lib, shu bilan birga yoki
Potensial maydon holida chiziqli integralni hisoblash.
Agar fazoviy soha bir bog‘lamli bo‘lsa, u holda potensial maydondagi chiziqli integral integrallash yo‘liga bog‘liq bo‘lmasdan, balki shu yo‘lning boshlang‘ich hamda oxirgi nuqtalarining koordinatalariga bog‘liq bo‘ladi va funksiyaning shu nuqtalardagi ortirmasiga teng bo‘ladi, ya’ni


bu yerda yo‘l nuqtadan nuqtagacha ixtiyoriy integrallash yo‘li. Odatda bunday yo‘l tarzida siniq chiziq olinadi, uning bo‘g‘inlari koordinatalar o‘qiga parallel (20-chizma). Bu holda potensialni hisoblash formulasi quyidagi ko‘rinishga ega bo‘ladi:


bunda


Agar potensial maydon kuch maydoni bo‘lsa, u holda bunday maydonda nuqtani ko‘chirishda bajarilgan ish maydonning bir nuqtasidan ikkinchi nuqtasiga ko‘chirish yo‘liga bog‘liq bo‘lmaydi va (76) formula bo‘yicha hisoblanishi mumkin.
Potensial vektor maydonda bir bog‘lamli sohada yotgan har qanday yopiq egri chiziq bo‘yicha sirkulyatsiya nolga teng. Kuch maydoni uchun bu maydon kuchlarining har qanday yopiq egri chiziq bo‘yicha bajarilgan ishi nolga teng bo‘ladi.

Yüklə 0,86 Mb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin