Vol. 9(33), pp. 884-891, 3 September, 2015 doi: 10. 5897/jmpr2015. 5789



Yüklə 150.41 Kb.
PDF просмотр
tarix19.08.2017
ölçüsü150.41 Kb.

 

 

Vol. 9(33), pp. 884-891, 3 September, 2015  



DOI: 10.5897/JMPR2015.5789 

Article Number: CEFF46755111 

ISSN 1996-0875 

Copyright © 2015 

Author(s) retain the copyright of this article 

http://www.academicjournals.org/JMPR 



       Journal of Medicinal Plants Research  

 

 



 

 

Full Length Research Paper 



 

The antibacterial and antidiarreal activities of the crude 

methanolic Syzygium cordatum [S.Ncik, 48 (UZ)] fruit 

pulp and seed extracts 

 

Maliehe Tsolanku Sidney*, Shandu Jabulani Siyabonga and Basson Albertus Kotze 

 

Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Private Bag 



X1001, Kwadlangezwa 3887, South Africa. 

 

Received 5 March, 2015; Accepted 19 August, 2015 



 

Diarrheal infections are the major cause of high morbidity and mortality rates, especially in the 

developing countries. Different parts (roots, bark and leaves) of the species Syzygium cordatum have 

been used as antidiarrheal extracts with the exception of its fruit-pulps and seeds. This study aimed at 

evaluating the antibacterial and  antidiarrheal activity of S. cordatum pulp and seed extracts so to find 

newer and more cost-effective means to prevent diarrhoea. The harvested fruits were separated into 

pulp and seeds, dried and extracted with methanol using Soxhlet extraction. The extracts were screened 

for phytochemicals. The antibacterial and in-vivo antidiarrheal activities were determined using the 

microdillution method and castor oil-induced rat model, respectively. The percentage yields of 10 for 

fruit-pulp extract and 6 for seed extract were obtained. The detected phytochemicals were phenolics, 

alkaloids, cardiac glycosides, phytosterols, flavonoids, saponins, terpenoids and betulinic acid with the 

total phenolic content of 16.4±1.8 and 21.4±1.4 µg/mg for pulp and seed extracts, respectively. The pulp 

extract exhibited the lowest minimum inhibitory concentration (MIC) value of 3.13 mg/ml against some 

gram-positive and gram-negative bacteria while the seed extract had lowest MIC on. The in vivo 

antidiarrheal activity showed the percentage inhibition of 41 for the seed extract and 49 for pulp extract. 

The antibacterial and antidiarrheal activities were owed to the detected phytochemicals, and thus 

promoting  S. cordatum fruit-pulps and seeds as potential sources of therapeutic compounds against 

diarrheal infections. 

 

Key words:

 Antibacterial, antidiarrheal, antimotility, phytochemicals.

 

 

 



INTRODUCTION 

 

Diarrheal infections are major causes of morbidity and 



mortality worldwide, especially in developing countries 

among infants and children. There are approximately 1.5 

billion episodes of diarrheal infections per year. More 

than one in  ten  deaths  of  children under  the  age  of  5 

years are due to diarrhoeal infections (WHO and 

UNICEF, 2009). Diarrhoea is gastrointestinal disorder 

that is characterized by a decrease in the stool 

consistency and an increase in frequency, fluidity, or 

volume of the faeces  during  defecation  for  a  period  of

 

*Corresponding author. E-mail: sidttmaliehe@gmail.com. 



Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution 

License 4.0 International License



 

 

 

 



 

days or weeks (Mazzolin et al., 2013). The most common 

symptoms of diarrhoeal infections range from mild and 

self-limiting symptoms (Mims et al., 2004).  

However, severe diarrhoea may lead to the disordered 

gastrointestinal tract (GIT) motility, dehydration, 

electrolyte imbalance, acidosis and malnutrition (Dyer 

and Gould, 2011). Diarrhoea often occurs due to the 

damage of the intestinal mucosal cells by exotoxins and 

endotoxins of microbial origin in contaminated food and 

water and metabolic disorder in gastrointestinal tract 

(Kumar et al., 2001).  

Several studies have reported the beneficial effects of 

fruit pulps and seed extracts in the treatment of 

diarrhoeal infections (Ashorobi and Umukoro, 2005; 

Maha et al., 2013). The antibacterial and antidiarrheal 

activitiv of fruit pulp and seed extracts depend on the 

presence and concentrations of phytochemicals (Arup et 

al., 2012). According to Neethiriajan et al. (2012), 

phytochemicals have strong antibacterial and 

antidiarrheal properties. Although fruits and seeds are 

excellent sources of therapeutic phytochemicals, pulps 

and seeds have been rarely used as medicine (van Wyk 

et al., 2009; Kossah et al., 2011; Srividhya et al., 2013).  

However, the prohibitive costs and the negative side 

effects of allopathic medicine used against diarrheal 

infections have recently elevated fruits and seeds as 

sources for novel antidiarrheal agents.  



S. cordatum

 are 


edible fruit-trees native to the Republic of South Africa 

(RSA). They are widely distributed in the Eastern Cape, 

KwaZulu-Natal, across northern part of the RSA and in 

areas with high rainfall (Orwa et al., 2009). The bark and 

leaves of 

Syzygium cordatum

 trees have been proven to 

possess antidiarrhoeal properties (Sibandze

 

et al., 2010; 

Amabeoku and Deliwe, 2013).  

The fruits of 



S. cordatum

 have only been used for 

consumption and not for pharmacological purposes such 

as treatment of diarrheal infections. The fruits are purple, 

ovoid and fleshy up to 2 cm fruits with 2.8 cm thick seeds 

(Downs and Wilson, 2012). The fruiting season is usually 

from October to June in Republic of South Africa (RSA) 

(Drummond and Moll, 2002).  

The study was undertaken to evaluate the antibacterial 

and antidiarrheal activities of 



S. cordatum

 pulp and seed 

extracts as to find novel sources that can be developed 

for treatment of diarrhoeal infections. 



 

 

MATERIALS AND METHODS 

 

Fruits of 



S. cordatum 

were randomly harvested in summer 

(February, 2014) from the trees at the main campus of the 

University of Zululand (UZ), KwaZulu-Natal, RSA. The fruits were 

washed with distilled water, seeds and pulps were manually 

separated. The fruit pulps and seeds were air-dried at room 

temperature. The dried 

S. cordatum 

fruit-pulps and seeds were 

separately ground to a coarse powder form using an electric grinder 

and filtered with a filter of mesh size 1.0 mm to increase the surface 

area for solvents during the extraction process. The grounded 

samples were stored at 4°C until required for use. 

Sidney  et al.          885 

 

 



 

Extraction 

 

A



 Soxhlet 

extraction



 

was done according to Bii



 

et al.


 

(2009) with 

some modifications. The ground 

S. cordatum

 fruit-pulp sample (100 

g) was subjected to Soxhlet extraction using 400 ml of methanol 

(Univ.AR). The sample was put on a mechanical shaker at a speed 

of 200 rpm at 37°C for 12 h. The extract obtained was filtered 

through Whatman filter paper and concentrated using a Bȕchi 

rotary evaporator at 45°C. The yield of the extract was weighed and 

re-dissolved in 100 ml of 10% dimethyl sulfoxide (DMSO) to the 

volume concentration of 100 mg/ml. The extracts were stored at 

4°C until they were to be used. The percentage yield from 



S. 

cordatum

 fruit-pulp extract was calculated using the formula below 

that was used by Shahid (2012). 

 

                           Weight of the extract (g) 



% Yield =                                                           × 100

                    Weight of powdered sample (g)  

 

 

 



Phytochemical compounds 

 

Phytochemical screening 

 

The extracted crude 



S. cordatum

 fruit pulp and seed extracts were 

screened for phenolics, alkaloids, flavonoids, tannins, phenols, 

terpenoids, cardiac glycoside, saponins and betulinic acid.  The 

phytochemical screening was done in all the extracts (except for 

betulinic acid) using the methods of Harborne (1973).  



 

 

Betulinic acid -thin-layer chromatography  

 

An original line of 2 cm from the edge, across the plate was drawn. 



Betulinic acid was loaded on thin-layer chromatography plate as 

standard indicator followed by loading of methanol extract of 



S. 

cordatum

 fruit-pulp. The thin-layer chromatography plate was 

placed in a chromatography tank containing mixture of hexane and 

ethyl acetate in the ratio of 7:3, respectively, covering about 1 cm of 

the plate. The chromatography was allowed to proceed until the 

hexane-ethyl acetate reaches the top of the plate. At that point, the 

chromatogram was removed from the tank and dried using hot air 

dryer. The plate was viewed under ultra violet light at 354 nm. It 

was then sprayed with 5% sulphuric acid-methanol solution. The 

appearance of a pink colour indicated the presence of betulinic acid 

(Walker, 1984). 

 

 



Quantification analysis of total phenolic content  

 

The total phenolic contents were determined by the Folin-

Ciocalteau method according to Makkar et al. (1993). An aliquot 

(0.2 ml) of 500 μg/ml methanolic fruit-pulp and seed extracts were 

made up to 1.0 ml with distilled water, respectively. 0.5 ml of Folin-

Ciocalteau reagent (1N) was added, followed by 2.5 ml of sodium 

carbonate solution (20%). The mixtures were mixed properly, and 

then incubated at room temperature for 40 min. The absorbance of 

the blue-colored complex formed was measured at 725 nm against 

the appropriate blank. The total phenollic content was determined 

from the standard curve of tannic acid and expressed as 

equivalents of tannic acid (μg/mg). 

 

 

Antimicrobial activity 

 

The bacterial strains known to cause GIT infections used in this 



study included; 

Bacillus cereus 

(ATCC 10102),



 Staphylococcus 

aureus   

(ATCC    25925)



,    Enterococcus    hirae    

(ATCC    8043)



,  

886         J. Med. Plants Res. 

 

 



 

Escherichia coli 

(ATCC 25922),



  Pseudomonas aeruginosa 

(ATCC 


7700)

 

and 


Vibrio vulnificus 

(AL 042). 

 

 

Revival of the selected bacterial strains  



 

The selected bacteria were inoculated into nutrient broth and 

incubated at 37°C for overnight. Afterwards, 1 ml from each of the 

bacteria species was pipetted into 9 ml of fresh prepared nutrient 

broth in separate test tubes labelled with corresponding 

microorganism. The test tubes were then incubated at 37°C for 

overnight .After overnight incubation, absorbance of the selected 

bacterial strains was read in the spectrophotometer (600 nm) for 

determination of their turbidity. The turbidity of the resulting 

suspensions was diluted with nutrient broth to obtain an 

absorbance of 0.132. This absorbance was taken as comparable to 

0.5 McFarland turbidity standard. The turbidity was estimated to be 

equivalent to 1.5 x colony forming unit (CFU)/ml (Qaralleh et al., 

2012).  


 

 

Minimum inhibitory concentration (MIC) 

 

A serial microdilution method was adapted as described by Eloff 

(1998) and Qaralleh et al. (2012) to measure the MIC of the fruit-

pulp extract. The MIC is the lowest concentration of the extract 

required to inhibit microbial growth. 96-well microplate was used to 

quantitatively determine the MIC of the extract. The sterile nutrient 

broth (50 μl) was added to all the wells of the 96-well microplate 

and 50 μl of the extract (50 mg/ml, in 10% DMSO) was poured in 

the wells in the first rows and mixed well. The extract mixture (50 μl) 

were removed from all the wells in the row A to perform a 3-fold 

serial dilution down the columns. The last 50 μl, in the last column 

was discarded so that the total volume solution of each well was 50 

μl. The selected bacterial strains (50 μl) were transferred into the 

corresponding wells. 10% DMSO was used as negative control 

while ciprofloxacin (20 μg/ml) was used as a positive control. The 

plate was covered and incubated at 37°C for overnight. 0.2 mg/ml 

of P-iodonitrotetrazodium violet (INT) solution was used after the 

incubation period. 40 μl of 0.2 mg/ml INT solution was added to 

each well and incubated at 37°C for 30 min. A reddish colour which 

was the result of INT being reduced by the metabolic activity of 

microorganism to formazan indicated microbial activity. The clear 

colour was to be the indication of the absence of bacterial activity 

since the INT was not broken-down to form formazan. The test was 

replicated three times and the mean value was reported. 

 

 

Minimum bactericidal concentration (MBC) 



 

For the determination of MBC, the agar dilution method was used. 

The MBC of the extract was determined by removing a loop full of 

each culture medium from the wells that had no bacterial growths. 

They were streaked on different sterile nutrient agar plates. The 

agar plates were incubated at 37°C for 12 h. The lowest 

concentration of the 

S. cordatum

 fruit-pulp extract that exhibited the 

complete killing of test microorganisms was considered as the MBC 

(Qaralleh et al., 2012). 

 

 

Antidiarrheal and antimotility activities 



 

Animals 

 

Ethical clearance for the use of animals was collected from the 



Research Animal Ethics Committee (RAEC) of the UZ and the 

twelve white 



Sprague-Dawley 

rats (150 to 260 g) were collected 

from  the  animal  house  in  the  Department  of  Biochemistry   and  

 

 



 

 

Microbiology at the same institution. Prior to the determination of 



the antidiarrhoeal and antimotility activities, rats were fed with 

standard food and given free access to water for one week to adapt 

to the laboratory conditions (temperature 23±2°C and 12 h light 

dark cycle). The rats were then fasted for 18 h before the start of 

the experiment to empty the GIT and to increase their 

responsiveness to the extracts and drugs used, but allowed free 

access to water (Orhan et al., 2013). 

 

 



Antidiarrheal activity 

 

The method used in for determination of antidiarrheal activity was 



adopted from Teke et al. (2007), with some modifications. The rats 

were divided into four groups of four rats each namely: Group A, 

Group B, Group C and Group D. Group A served as a negative 

control. It received vehicle distilled water (2 ml /kg) orally. Group D 

served as a positive control. It received atropine at the dose of 5 

mg/kg orally by gavage. Group B and Group C received the seed 

and fruit-pulp extracts (400 mg/kg), respectively. Each rat was put 

in its own cage. Diarrhoea was introduced to each rat by orally 

administering 0.2 ml of castor oil. After 30 min of administration of 

castor-oil, observation of the defecation was done for 5 h. The 

onset time of faeces and number of normal and wet faeces were 

the determined parameters. A score based on stool consistency 

was assigned as follows; normal-stool = A and wet-stools = B. The 

presence of normal stools was recorded as a positive result

indicating protection offered by the controls and the extracts from 

diarrhea while the presence of watery stools was recorded as 

negative results.  

 

 



Antimotility activity 

 

The method used in the antimotility test was adopted from Teke et 



al. (2007), with some modifications. The animals were divided into 

four groups of four rats each namely: Group A, Group B, Group C 

and Group D. Diarrhoea was introduced to each rat in all groups by 

orally administering 0.2 ml of castor oil. After 30 min of 

administration of castor-oil, all rats received different treatments. 

Group A served as a negative control and received distilled water (2 

ml /kg) orally. Group D served as a positive control. It received 

atropine at the dose of 5 mg/kg orally by gavage. Group B and C 

received the seed extract and fruit-pulp extract of 400 mg/kg, 

respectively. Thereafter, each rat was put in its own cage after the 

administration of 2 ml of charcoal meal (3 % deactivated charcoal in 

distilled water) orally. The rats were sacrificed 30 min thereafter for 

determination of gastrointestinal motility. The intestinal distance 

moved by the charcoal meal from pylorus to caecum was measured 

and expressed as a percentage of distance travelled from pylorus 

to caecum. The mean movement of charcoal meal in ratio to the 

intestinal length and percentage of inhibition were arithmetically 

measured. The following formulas were used: 

 

                        



Length travelled by the charcoal meal 

% travelled =                                                                            × 100

                            Total length of small intestine 

 

 

 



                          Mean length of the duodenum - length of charcoal meal      

% inhibition =                                                                                                × 100

                                                  Mean length of duodenum 

 

 



 

RESULTS 

 

The use of methanol as an extracting solvent resulted in 



Sidney  et al.          887 

 

 



 

Table 1.

 Preliminary phytochemical screening of 



S. cordatum

 PE and 


SE samples and extracts. 



Phytochemicals Tests 



Samples 

Results 

Alkaloid 

 

Dragendorff’s Mayer’s 



PE   

SE             

PE    

SE       



++ 


++ 


 

 

 



 

Flavonoids Alkaline 

reagent 

PE  


SE         



 

 

 



 

Saponins Frothing 

PE   

SE   


++ 

 



 

 

 



Cardiac glycosides 

 

Sodium nitroprusside 



PE 

SE 


 



 

 

 



 

Tannins Ferric 

chloride 

PE 


SE 



 

 

 



 

Phenols Ferric 

chloride 

PE 


SE 

++ 



 

 

 



 

Terpenoids Salkwosk 

 

PE   


SE 



 

 

 



 

Betulinic acid (BA)    TLC 

PE 

SE 


 



Key:- denotes absence, + denotes low concentration, ++ denotes moderate 

concentration, +++ denotes high concentration, TLC denotes Thin layer 

chromatography and PE denote fruit-pulp extract. 

 

 



 

a good percentage yield of 10 for fruit-pulp extract and 6 

for seed extract. Phytochemicals are non-nutritional 

bioactive chemicals from plants that help plants to survive 

biotic and abiotic environmental changes and have 

therapeutic properties in humans. The total phenolic 

content of 16.4±1.8 and 21.4±1.4 µg/mg were obtained in 

pulp and seed extracts, respectively. The qualitative and 

quantitative analysis of phytochemicals from 

S. cordatum 

fruit-pulp and seed samples and extracts are presented in 

Table 1. 

The antibacterial results are as presented in Table 3. 

Pulp extract showed the lowest MIC value of 3.13 mg/ml 

on 


S. aureus 

(ATCC 25925)



, B. cereus 

(ATCC 10102)



, E. 

hirae 

(ATCC 8043)



 

and


 P. auriginosa 

(ATCC 7700) 

isolates while the seed extract had the lowest MIC value 

(6.25 mg/ml) on



 

all gram-positive bacteria. 



S. cordatum 

fruit-pulp and seed extracts exhibited different percentage 

of inhibition against the diarrheal activity in castor oil 

induced-rats. 



S. cordatum 

fruit-pulp and seed extracts 

both reduced the number of wet stools, total stools and 

onset time generally in comparison to the negative 

control (distilled water).  

S. cordatum 

fruit-pulp and seed 

extracts, in a dose-related manner (400 mg/kg of rat), 

exerted the antidiarrhoeal properties by reducing 

intestinal motility. The results are tabled in Tables 4 and 5 

below. 


 

 

DISCUSSION  

 

The use of methanol as an extracting solvent resulted in 



a good percentage yield of 10 for fruit-pulp extract and 6 

for seed extract. The good percentage yields implied that 

methanol is an important solvent to be used when 

determining the biological activities of the extracts. The 

ability of methanol solvent to extract good yields is owed 

to its polarity. 

Phytochemicals have been reported to possess strong 

antibacterial, antidiarrheal and gastroprotective properties 

(Neethirajan et al., 2012). The phytochemicals detected  


888         J. Med. Plants Res. 

 

 



 

Table 2.

 Total phenolic content in 500 µg/ml of crude



 

methanolic 



S. cordatum

 pulp and seed extract. 

 

Assay Expression 

of 

results Concentration (µg/mg) original sample) ± SER 

Total phenolic 

TAE: Pulp-extract, seed extract 

16.4±1.8, 21.4±1.4 

 

Values are the average of duplicates experiments and represented as mean ± standard error (SER) and were expressed 



as µg/mg – where TAE denotes tannic acid equivalent. 

 

 



 

Table 3.

 MIC and MBC (mg/ml) of the 



S. cordatum

 pulp and seed extracts on the selected bacterial strains known to cause 

GIT infections. 

 

Bacterial strains 



Pulp extract 

Seed extract 

Ciprofloxacin 

MIC MBC MIC 

MBC 

MIC MBC 

S. aureus 

(ATCC 25925)



 

3.13 6.25 6.25 

12.5 3.13  6.25 

E.coli 

(ATCC 25922)



 

6.25 6.25 12.5 

12.5 3.13  6.25 

V. vulnificus 

(AL 042)


 

6.25 12.5  25 50 

1.56 12.5 

B. cereus 

(ATCC 10102)



 

3.13 6.25 12.5 

12.5 3.13  3.13 

E. hirae 

(ATCC 8043)



 

3.13 3.13 6.25 

12.5 1.56  3.13 

P. aeruginosa 

(ATCC 7700)



 

3.13 6.25 12.5 

12.5 3.13  12.5 

 

 



 

Table 4.

 Effects of the crude methanolic 



S. cordatum

 PE and SE extracts on castor oil-induced rats. 

 

Groups 

Treatments 

Doses 

Onset times (min) 

Stools 

normal Wet 

Distilled water plus Co



 

2 ml/kg 


51 

13±0.15


 

10.3±0.21 

SE plus Co 



400 mg/kg 

68 


8.25±0.17

2.75±0.31

PE plus Co 



400 mg/kg 

98 


5.25±0.20

 

1.5±0.41 

Atropine plus Co 



5 mg/kg 

127 


1.25±0.19

 

0

 

 

Key: Values are represented as mean ± standard error. PE denotes fruit-pulp extract, SE denotes seed extract and Co denotes 



castor oil. 

 

 



 

in both extracts were phenolic compounds, alkaloids, 

cardiac glycosides, phytosterols, flavonoids, saponins, 

terpenoids and betulinic acid (Table 1). The quantitative 

analysis showed the significant amount of the total 

phenolic compounds (16.4±1 μg/mg) in pulp extract and 

(21.4±1.4 µg/mg) in seeds extract (Table 2). The 

detected phytoconstituent implied that 



S. cordatum

 pulps 


and seeds can be potential sources for novel lead 

substances with therapeutic and preventive applications 

against bacteria that may cause diarrheal infections. 

Ciprofloxacin is a broad-spectrum antibiotic which is 

effective against gram-negative and gram-positive 

bacteria (Volans and Wiseman, 2010). Ciprofloxacin has 

bactericidal effect against 

E. coli, Salmonella spp

., 


Pseudomonas aeruginosa



Staphylococcus spp

,

 

Streptococcis pp

 and 


Klebsiella spp

.strains (Paw and 

Shulman, 2010). Ciprofloxacin is widely used to treat 

urinary and respiratory infections as well as 

gastroenterities. Ciprofloxacin (20 μg/ml) was used as a 

positive control on the tested bacteria in this study. 

Ciprofloxacin had the inhibitory effects on all the  selected 

bacteria with the lowest MIC values of (1.56 mg/ml) on 



V. 

vulnificus

 (AL 042), 



V. fluvialis

 (AL 019) and S





typhimurium

 (ATCC 700030). The highest MIC value 

(3.13 mg/ml) of ciprofloxacin was recoded on all other 

selected bacterial strains. 

Many naturally occurring compounds found in pulp 

extract have been reported to possess antibacteriall 

activity. 

S. cordatum 

pulp extract showed broad-spectrum 

antibacterial action with the lowest MIC value of 3.13 

mg/ml on 



S. aureus

 (ATCC 25925), 



B. cereus

 (ATCC 


10102), 

E. hirae

 (ATCC 8043) and 



P. aeruginosa

 (ATCC 


7700). Even though the antibacterial action of 

S. 

cordatum 

pulp extract was more pronounced on all gram-

positive bacterial strains, the extract also show 

remarkable antibacterial activity against gram-negative 

bacteria (

P. aeruginosa

 (ATCC 7700) as well with the 

same MIC value of 3.13 mg/ml. Gram-negative bacteria, 

in addition to a thin peptidoglycan layer (2 to 7 nm), 

possess about 7 to 8 nm of the outer membrane. This 

outer membrane composes of additional protective 

lipopolyssachride    layer    that   exhibits     toxicity     and  


Sidney  et al.          889 

 

 



 

Table 5. 

Antimotility activity of crude methanolic



 S. cordatum

 PE and SE extracts on castor oil-induced rats. 

 

Groups Treatments 

Doses (ml/kg or 

mg/kg) 

Mean total length      

of small intestines 

Mean distance travelled 

by charcoal 

Percentage 

Inhibition 

Distilled water 



2 ml/kg 

130.8±3.97 

106.8 ±6.54 



SE plus Co 

400 mg/kg 

125.5±4.22 

74.3 ±3.45 

41 



PE plus Co 



400 mg/kg 

114.8 ±3.68 

59±3.34 

49 


D Atropine 

mg/kg 



115.5±6.28 41.3±3.97 

64 


 

Key: Values are represented as mean ± standard error. PE denotes fruit-pulp extract, SE denotes seed extract and Co denotes castor 

oil. 

 

 



 

antigenicity against antimicrobials or chemotherapeutic 

agents (Martinko and Madigan, 2006). It was concluded 

that the high resistance shown by some gram-negative 

bacteria as compared to gram-positive bacteria to both 

S. 

cordatum

 pulp extract was due to the mechanism of 

action of this layer. Gram-positive bacteria do not 

possess this layer and therefore, they were generally 

sensitive to the action of the antibacterial action of the 

detected phytochemicals. Gram-positive bacteria allow 

the direct contact of the extract constituents with the 

phospholipid bilayer of the cell membrane, enabling the 

antibacterial compounds to inhibit bacterial growth easily.  

The low MIC values displayed by the fruit-pulp extract 

indicated its higher efficacy against bacteria causing GIT 

infections than the seed extract. According to Jayashree 

et al. (2014), the good and promising potency of 

methanolic fruit extract has the MIC value ranging 

between 3.125 to 12.5 mg/ml. This implied that 

S. 

cordatum

 pulp extract has a potential to be used as 

sources of novel antibacterial agent. Antimicrobial 

substances are considered as bactericidal agents when 

the ratio is MBC/MIC ≤ 4 and bacteriostatic agents when 

the ratio is MBC/MIC > 4 (Erhabor et al., 2013). 



S. 

cordatum

 fruit-pulp extract exhibited bactericidal effect on 

all selected bacterial species. However, the standard 

drug-ciprofloxacin showed bactericidal effect on all 

selected bacterial species with the exception on 

V. 

vulnificus

 (AL 042) where it showed the bacteriostatic 

effect.  

Castor oil is an effective emollient laxative agent. 

Castor oil causes a decrease in fluid and nutrient 

absorption, increase in the electrolyte secretion and  

water and produces alterations in intestinal motility (Priff 

and Harold, 2005). The diarrheal activity of castor oil is 

attributed to its active cathartic glyceride known as 

ricinoleic acid (Chambers et al., 2015). Thus, castor oil-

induced diarrhoea is as a result of the action of ricinoleic 

acid formed from the hydrolysis of its triglyceride in the 

duodenum by pancreatic lipase. The ricinoleic acid 

stimulates intestinal hypersecretion, hypermotility and 

decreases gastrointestinal transit time (Schellack, 2004).  

In this study, castor oil was used to induce diarrhoea in 

the test rats. Atropine was used in this study as a positive 

control in 



in-vivo

 antidiarrheal activity. Atropine is a 

tertiary amine belladonna alkaloid (Chambers et al., 

2015). Atropine is a racemic hyoscyamine tropic acid 

ester of the base tropine. Atropine has high affinity for 

muscarinic receptors (Hollinger, 2008; Champe and 

Harvey, 2009). Atropine exerts its pharmacodynamic 

effect by binding competitively at the muscarinic 

receptors to prevent acetylcholine to bind, and thus 

reversing excessive secretions of fluids and electrolytes. 

Atropine actions reduce the interstinal hypertonicity and 

hypermotility of the GIT and thus act as an antidiarrheal 

agent (Lehne, 2004) 

Group C was fed



 S. cordatum

 pulp extract at a dose of 

400 mg/kg of a rat weight. Group C had stool onset time 

of 68 minutes, total normal stools of 8.25±0.17 and the 

total wet stools of 2.75±0.3 while Group B (seed extract) 

at the same dose as Group C and had the stool onset 

time of 98 minutes, total normal stool of 5.25±0.20 and 

the total wet stools of 1.5±0.41 in comparison to the 

Group A (distilled water) which had stool onset time of 51 

min, total normal stools of 13±0.15 and the total wet 

stools of 10.3±0.2. Group D had the longest onset time 

(127 min) and the least total number of normal stools 

(1.25±0.19) with wet stools not being observed. 

S. 

cordatum

 fruit-pulp and seed extracts exhibited the 

antidiarrheal activity by reducing the number of wet 

stools, total stools and onset time generally. 

Phytochemicals mediate antidiarrheal activity through 

antisecretory and antimotility mechanisms (Cowan, 

2015). It was therefore esteemed that the antidiarrheal 

activity observed in Group B and C was due to the 

presence of these phytochemicals in 

S. cordatum 

pulp 


and seed extracts. The extracts mechanism of action in 

antidiarrheal activity was esteemed to mimic that of an 

atropine (control). 

Group D was given an antimuscarinic drug (atropine) 

and had the highest inhibitory percentage of 64 followed 

by Group C with 49 of inhibition. Group B (seed extract) 

had the inhibitory percentage of 41. There was no 

inhibition observed in Group A (distilled water). The 

reduction in the distance travelled by charcoal in the 

S. 

cordatum

 fruit-pulp and seed extracts treated groups 

indicated that 

S. cordatum

 pulp and seed extracts 

exerted antidiarrheal activity by decreasing the GIT 

motility.  The  reduction  of  GIT   motility   of   extracts   in  



890         J. Med. Plants Res. 

 

 



 

comparison to the negative control (distilled water) was 

attributed to the presence of the detected phytochemicals 

(saponins, alkaloids, triterpenoids, flavonoids, tannins 

and betulinic acid). Phytochemicals exert similar mode of 

action as antimotility agents (Ahmad et al., 2006; Saleem 

et al., 2010; Chollet and Gleason, 2012).  

Thus, 


S. cordatum 

pulp and seed extracts might have 

exhibited the antimotility action through the same 

mechanism of action exerted by the drug-atropine. The 

results scientifically support 

S. cordatum 

pulp and seed 

extracts as potential sources for effective, novel 

antibacterial and antidiarrheal agents. 

 

 

Conclusion 

 

S. cordatum

 pulp and seed extracts demonstrated the 

therapeutic and biological efficacy (antibacterial, 

antidiarrheal and antimotility activities). Due to the 

pharmacodynamic effects revealed by 

S. cordatum 

pulp 


and seed extracts,

 S. cordatum 

pulps and seeds can be 

viewed as satisfactorily beneficial sources of therapeutic 

compounds against diarrheal infections. Further studies 

will focus on the purification and identification of some of 

the bioactive compounds that are responsible for the 

antibacterial and antidiarrheal activities. 

 

 

Conflict of Interest 

 

The authors have not declared any conflict of interest. 

 

 

REFERENCES 



 

Ahmad I, Aqil F, Owais M (2006). Modern phytomedicine: Turning 

medicinal plants into drugs. John Wiley and Sons. pp. 247-249. 

Amabeoku GJ, Deliwe M (2013). Evaluation of Antidirrheal and 

Antidiabetic Activities of Leaf Aqueous Extract of Syzygium cordatum 

Hoscht.ex Krauss (Mytraceae) in Robents. Int. J. Pharm. 9(2):125-

133. 

Arup M, Mradu G, Sohini M, Saumyakanti S (2012). HPLC Profiles of 



Standard Phenolic Compounds Present in Medicinal Plants. Int. J. 

Pharm. Phytother. Res. 4(3):162-167. 

Ashorobi RB, Umukoro S (2005). Effect of 

Aframomum melegueta 

Seed 


Extract on Castor Oil-Induced Diarrhea. Pharm. Biol. 43(4):330-333. 

Bii CC, Ruttoh KE, Machocho AK, Karimie LK, Okema PO (2009). 

Antibacterial Activity of 

Tabernae Montana 

(Apocynaceae) extracts. 

Afr. J. Tradit. Complement. Altern. Med. 6(2):186-94. 

Chambers JE, Roe RM, Hodgson E, Mailman (2015). Dictionary of 

Toxicology. 3

rd

 edition. Academic Press. Oxford. pp. 43-44, 72, 164. 



Champe PC, Harvey RA (2009). Pharmacology. 4

th

 edition. Lippincott 



Williams and Wilkins. pp. 55-56. 

Chollet R, Gleason KF (2012). Plant Biochemistry. Jones and Bartlett 

Learnin. LLC. pp. 149-166. 

Cowan KM (2015). Microbiology. A systems Approach. 4

th

 edition. 



McGraw Hill Education (US). pp. 671-672. 

Downs CT, Wilson AL (2012). Fruit nutritional composition and non-

nutritive traits of indigenous South African tree species. South Afr. J. 

Bot. 78:30-36. 

Drummond RB, Moll EH (2002). Trees of Southern Africa. Struik Nat. 

(RSA). pp. 832-835. 

Dyer MR, Gould EB (2011). Pathophysiology for the Health Professions. 

4

th



 edition. Saunders Elsevier. pp. 323-375. 

 

 



 

 

Eloff JN (1998). A sensitive and quick microplate method to determine 



the minimum inhibitory concentration of plant extracts for bacteria. 

Plant Med. 64:711-713. 

Erhabor JO, Oshomoh EO, Timothy O, Osazuwa ES, Idu M (2013). 

Antimicrobial activity of methanolic and aqueous leaf extracts of 



Emilia coccinea

 (Sims) G. Don. Nig. J. Biotechnol. 25:37-45. 

Harborne JB. (1973). Phytochemicals Methods. Chapman and Hall Ltd, 

(UK). pp. 49-188. 

Hollinger MA (2008). Introduction to Pharmacology. 3

rd

 ed. CRC Press. 



P. 185. 

Jayashree VH, Londonkar R (2014). Comparative phytochemical 

studies and antimicrobial potential of fruit extracts of 

Feronia Limonia

 

(Linn). Int. J. Pharm. Pharm. Sci. 6(1):731-734. 



Kossah R, Zhang H, Chen W (2011). Antimicrobial and antioxidant 

activities of Chinese sumac (



Rhus typhina

 L.) fruit extract. Food 

Contr. 22(1):128-132. 

Kumar P, Clark M (2001). Clinical Medicine. 4

th

 ed. Saunders. pp. 217-



267, 283, 609. 

Lehne RA (2004). Pharmacology for Nursing Care. 5

th

 ed. Saunders. 



pp. 115-116. 

Maha YA, Babiker MAE, Dalia JK, Samia MAEB (2013). Antidiarrhoeal 

Activity of Ethanolic Extract of 

Adansonia digitata

 Fruit Pulp in Rats. 

J. Phys. Pharm. Adv. 3(6):172-178. 

Makkar HPS, Blummel M, Borowy NK, Becker K (1993). Gravimetric 

determination of tannins and their correlations with chemical and 

protein precipitation methods. Sci. Food Agric. 61:161-165. 

Martinko JM, Madigan JT (2006). Brock, Biology of Microorganisms. 

11

th



 ed. Pearson Prentice Hall. pp 80:702-708. 

Mazzolin PL, de Almeida KRL, da Maia EO, Fernandes LTL, da Rocha 

LRM, Vilegas W, Pupo AS, Stasi LCD, Hiruma-Lim CA (2013). 

Antidiarrheal and intestinal antiinflammatory activities of a methanolic 

extract of 

Qualea parviora

 Mart. in experimental models. J 

Ethnopharmacol. 150:1016-1023. 

Mims C, Dockrell MH, Goering RV, Wakelin D, Zuckerman M, Rosit I 

(2004). Medical Microbiology. 3

rd

 ed. Mosby Publishers Limited 



Elsievier (Ltd) (Spain). pp. 277-311. 

Neethirajan K, Jayakumararaj R, Ramya S (2012). Profile of bioactive 

compounds in 

Syzygium cumini

–a review.



 

J. Pharm. Res. 5(8):4548-

4553. 

Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009). 



Agroforestree database: a tree reference and selection guide version. 

Paw H, Shulman R (2010). Drugs in Intensive Care. 4

th

 ed. Cambridge 



University Press. pp. 50-51. 

Priff N, Harold C (2005). Pharmacology.2-in 1, Reference for Nursing. 

Lippincott Williams and Wilking. pp. 258-260. 

Qaralleh H, Siti A, Kamazeri, Othman AS, Muhammad T, Deny S 

(2012). Antimicrobial activity and essential oils of 

Curcuma 

aeruginosa



Curcuma mangga,

 and 

Zingiber cassumunar

 from 


Malaysia, Asian Pac. J. Trop. Med. 5(3):202-9. 

Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Raiz N, Jabbar A 

(2010). Antimicrobial natural products: an update on future antibiotic 

drug candidates. Nat. Prod. Rep. 27:238-254. 

Schellack S (2004). Pharmacology in Clinical Nursing Practise. 

Application Made Easy. Juta and Co Ltd (RSA). pp. 114-117. 

Shahid AA (2012). Biological activities of extracts and isolated 

compounds from 



Bauhinia galpinii

 (Fabaceae) and 



Combretum 

vendae

 (Combretaceae) as potential antidiarrheal agents-1 (Doctoral 

dissertation, University of Pretoria). 

Sibandze GF, van Zyl RL, van Vuuren SF (2010). The Antidiarrheal 

Properties of 

Breonodia salicia



Syzygium cordatum

 and 

Ozoroa 

sphaerocarpa

 when used in Combination in Swazi Traditional 

Medicine. J. Ethnopharmacol. 132(2):506-511. 

Srividhya M, Ramanathan K, Krishnanand N (2013). Efficacy of citrus 

fruit peel extracts against pathogens causing gastrointestinal 

disorders. Int. J. Pharm. Pharmacol. Sci. 5(4):975-1491. 

Teke GN, Kuiate JR, Ngouateu OB, Gatsing D (2007). Antidiarrhoeal 

and Antimicrobial Activities of 



Emilia coccinea 

(Sims) G. Don 

Extracts. J. Ethnopharmacol. 112(2):278-283. 

van Wyk BE, van Oudtshoorn B, Gerickle N (2009). Medicinal Plants of 

South Africa. Tien Wash Press (Pte). Ltd. Singapore. pp. 284-287. 

Volans GN, Wiseman HM (2010). Drugs Handbook. Palgrave 

Macmillan. pp. 26-27. 


 

 

 



 

Walker JM. (1984). Method in Molecular Biology, Proteins. Humana 

Press. pp. 185-189. 

World Health Organisation (WHO) and United Nations International 

Children's Emergency Fund (UNICEF) (2009). Diarrhoea; Why 

Children Are Still Dying and What Can Be Done. 

http://whqlibdoc.who.int/publications/2009/9789241598415_eng.pdf 

Sidney  et al.          891 

 

 

 



 

 

 



 

 

 



 

 

 



 

 

 




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2016
rəhbərliyinə müraciət

    Ana səhifə